Phenolic Compounds, Vitamins C and E and Antioxidant Activity of Edible Honeysuckle Berries (Lonicera caerulea L. var. kamtschatica Pojark) in Relation to Their Origin

. 2022 Feb 21 ; 11 (2) : . [epub] 20220221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35204315

Honeysuckles are frost tolerant plants providing early-ripening fruits with health-promoting properties which have been used in traditional medicine in China. This study evaluates the impact of the climatic conditions of two areas on the chemical composition and antioxidant activity (AOA; by DPPH-2,2-diphenyl-1-picrylhydrazyl and photochemiluminescence assays) of eight cultivars of honeysuckle berries (Lonicera caerulea L. var. kamtschatica Pojark) of various ripening times. Expectedly, chemical composition and AOA values varied depending on the cultivars, locality and selected methods. Berries from Lednice (the area with more sunshine) showed higher average contents of total monomeric anthocyanins (TMAC; pH differential absorbance method), vitamins C and E and total phenolics (high-performance liquid chromatography). In contrast, berries from Žabčice (the area with more rain) performed higher average contents of total phenolics and flavonoids (UV/VIS spectroscopic analyses). Interestingly, fundamental amounts of chlorogenic acid were determined irrespective of the locality. Regarding TMAC and vitamin C content, early ripening Amphora from both areas has been assessed as the best cultivar; concerning the content of phenolic compounds, Fialka from both areas and Amphora from Lednice is considered as the most valuable. The obtained results may facilitate the selection of the most valuable cultivars for both producers and consumers.

Zobrazit více v PubMed

Gawroński J., Żebrowska J., Pabich M., Jackowska I., Kowalczyk K., Dyduch-Siemiańska M. Phytochemical characterization of blue honeysuckle in relation to the genotypic diversity of Lonicera sp. Appl. Sci. 2020;10:6545. doi: 10.3390/app10186545. DOI

Kucharska A., Sokóƚ-Łętowska A., Oszmiański J., Piórecki N., Fecka I. Iridoids, phenolic compounds and antioxidant activity of edible honeysuckle berries (Lonicera caerulea var. kamtschatica Sevast.) Molecules. 2017;22:405. doi: 10.3390/molecules22030405. PubMed DOI PMC

Raudonė L., Liaudanskas M., Vilkickytė G., Kviklys D., Žvikas V., Viškelis J., Viškelis P. Phenolic profiles, antioxidant activity and phenotypic characterization of Lonicera caerulea L. berries, cultivated in Lithuania. Antioxidants. 2021;10:115. doi: 10.3390/antiox10010115. PubMed DOI PMC

Molina A.K., Vega E.N., Pereira C., Dias M.I., Heleno S.A., Rodrigues P., Fernandes I.P., Barreiro M.F., Kostić M., Soković M., et al. Promising antioxidant and antimicrobial food colourants from Lonicera caerulea L. var. Kamtschatica. Antioxidants. 2019;8:394. doi: 10.3390/antiox8090394. PubMed DOI PMC

Yan L., Xie Y., Wang Y., Zhu J., Li M., Liu X., Zhao D. Variation in contents of active components and antibacterial activity in different parts of Lonicera japonica Thunb. Asian Biomed. Res. Rev. News. 2020;14:19–26. doi: 10.1515/abm-2020-0004. DOI

Carlos-Reyes Á., López-González J.S., Meneses-Flores M., Gallardo-Rincón D., Ruíz-García E., Marchat L.A., Astudillo-de la Vega H., Hernández de la Cruz O.N., López-Camarillo C. Dietary compounds as epigenetic modulating agents in cancer. Front. Genet. 2019;10:79. doi: 10.3389/fgene.2019.00079. PubMed DOI PMC

Rupasinghe H.P.V., Arumuggam N., Amararathna M., De Silva A.B.K.H. The potential health benefits of hascap (Lonicera caerulea L.): Role of cyanidin-3-O-glucoside. J. Funct. Foods. 2018;44:24–39. doi: 10.1016/j.jff.2018.02.023. DOI

Liu S., Yu J., Guo S., Fang H., Chang X. Inhibition of pancreatic α-amylase by Lonicera caerulea berry polyphenols in vitro and their potential as hyperglycemic agents. LWT—Food Sci. Technol. 2020;126:109288. doi: 10.1016/j.lwt.2020.109288. DOI

Sharma A., Kim J.W., Ku S.K., Choi J.S., Lee H.J. Anti-diabetic effects of blue honeyberry on high-fed-diet-induced type II diabetic mouse. Nutr. Res. Pract. 2019;13:367–376. doi: 10.4162/nrp.2019.13.5.367. PubMed DOI PMC

Granato D., Mocan A., Câmara J.S. Is a higher ingestion of phenolic compounds the best dietary strategy? A scientific opinion on the deleterious effects of polyphenols in vivo. Trends Food Sci. Technol. 2020;98:162–166. doi: 10.1016/j.tifs.2020.01.010. DOI

Fenech M., Amaya I., Valpuesta V., Botella M.A. Vitamin C content in fruits: Biosynthesis and regulation. Front. Plant Sci. 2019;9:2006. doi: 10.3389/fpls.2018.02006. PubMed DOI PMC

De Camargo A.C., Biasoto A.C.T., Schwember A.R., Granato D., Rasera G.B., Franchin M., Rosalen P.L., Alencar S.M., Shahidi F. Should we ban total phenolics and antioxidant screening methods? The link between antioxidant potential and activation of NF-κB using phenolic compounds from grape by-products. Food Chem. 2019;290:229–238. doi: 10.1016/j.foodchem.2019.03.145. PubMed DOI

Hajimehdipoor H., Shahrestani R., Shekarchi M. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res. J. Pharmacogn. 2014;1:35–40.

Milde J., Elstner E.F., Graßmann J. Synergistic inhibition of low-density lipoprotein oxidation by rutin, ɤ-terpinene, and ascorbic acid. Phytomedicine. 2004;11:105–113. doi: 10.1078/0944-7113-00380. PubMed DOI

Speisky H., Shahidi F., De Camargo A.C., Fuentes J. Revisiting the oxidation of flavonoids: Loss, conservation or enhancement of their antioxidant properties. Antioxidants. 2022;11:133. doi: 10.3390/antiox11010133. PubMed DOI PMC

Granato D., Shahidi F., Wrolstad R., Kilmartin P., Melton L.D., Hidalgo F.J., Miyashita K., Van Camp J., Alasalvar C., Ismail A.B., et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018;264:471–475. doi: 10.1016/j.foodchem.2018.04.012. PubMed DOI

Lee S.K., Kader A.A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000;20:207–220. doi: 10.1016/S0925-5214(00)00133-2. DOI

Orsavová J., Hlaváčová I., Mlček J., Snopek L., Mišurcová L. Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits. Food Chem. 2019;284:323–333. doi: 10.1016/j.foodchem.2019.01.072. PubMed DOI

Sytařová I., Orsavová J., Snopek L., Mlček J., Byczyński L., Mišurcová L. Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times. Food Chem. 2020;310:125784. doi: 10.1016/j.foodchem.2019.125784. PubMed DOI

Lee J., Durst R.W., Wrolstad R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005;88:1269–1278. doi: 10.1093/jaoac/88.5.1269. PubMed DOI

Evans J.D. Straightforward Statistics for the Behavioral Sciences. Brooks/Cole Publishing; Pacific Grove, CA, USA: 1996. p. 634.

Chen L., Xin X., Yuan Q., Su D., Liu W. Phytochemical properties and antioxidant capacities of various colored berries. J. Sci. Food Agric. 2014;94:180–188. doi: 10.1002/jsfa.6216. PubMed DOI

Vuletić M.V., Dugalić K., Mihaljević I., Tomaš V., Vuković D., Zdunić Z., Puškar B., Jurković Z. Season, location and cultivar influence on bioactive compounds of sour cherry fruits. Plant Soil Environ. 2017;63:389–395. doi: 10.17221/472/2017-PSE. DOI

Lefèvre I., Ziebel J., Guignard C., Sorokin A., Tikhonova O., Dolganova N., Hoffmann L., Eyzaguirre P., Hausman J.F. Evaluation and comparison of nutritional quality and bioactive compounds of berry fruits from Lonicera caerulea, Ribes L. species and Rubus idaeus grown in Russia. J. Berry Res. 2011;1:159–167. doi: 10.3233/BR-2011-017. DOI

Rupasinghe H.P.V., Boehm M.M.A., Sekhon-Loodu S., Parmar I., Bors B., Jamieson A.R. Anti-inflammatory activity of haskap cultivars is polyphenols-dependent. Biomolecules. 2015;5:1079–1098. doi: 10.3390/biom5021079. PubMed DOI PMC

Khattab R., Celli G.B., Ghanem A., Brooks M.S.L. Effect of frozen storage on polyphenol content and antioxidant activity of haskap berries (Lonicera caerulea L.) J. Berry Res. 2015;5:231–242. doi: 10.3233/JBR-150105. DOI

Juríková T., Mlček J., Balla Š., Ondrášová M., Dokoupil L., Sochor J., Ďurišová Ľ., Eliáš P., Jr., Adámková A., Baroň M., et al. The elucidation of total polyphenols, individual phenolic compounds, antioxidant activity of three underutilized fruit species—Black crowberry, honeyberry, European cranberry with their accumulation. Agronomy. 2021;11:73. doi: 10.3390/agronomy11010073. DOI

De Silva A.B.K.H., Rupasinghe H.P.V. Polyphenol composition and anti-diabetic properties in vitro of haskap (Lonicera caerulea L.) berries in relation to cultivar and harvesting date. J. Food Compost. Anal. 2020;88:103402. doi: 10.1016/j.jfca.2019.103402. DOI

Wang Y., Wang Y., Song Z., Zhang H. Repression of MYBL2 by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthesis pathway in Arabidopsis. Mol. Plant. 2016;9:1395–1405. doi: 10.1016/j.molp.2016.07.003. PubMed DOI

Wrolstad R.E. Anthocyanin Pigments-Bioactivity and Coloring Properties. J. Food Sci. 2004;69:C419–C425. doi: 10.1111/j.1365-2621.2004.tb10709.x. DOI

Auzanneau N., Weber P., Kosińska-Cagnazzo A., Andlauer W. Bioactive compounds and antioxidant capacity of Lonicera caerulaea berries: Comparison of seven cultivars over three harvesting years. J. Food Compost. Anal. 2018;66:81–89. doi: 10.1016/j.jfca.2017.12.006. DOI

Maƚodobry M., Bieniasz M., Dziedzic E. Evaluation of the yield and some components in the fruit of blue honeysuckle (Lonicera caerulea var. edulis Turcz. Freyn.) Folia Hortic. 2010;22:45–50. doi: 10.2478/fhort-2013-0150. DOI

Ochmian I., Skupień K., Grajkowski J., Smolik M., Ostrowska K. Chemical composition and physical characteristics of fruits of two cultivars of blue honeysuckle (Lonicera caerulea L.) in relation to their degree of maturity and harvest date. Not. Bot. Hortic. Agrobot. 2012;40:155–162. doi: 10.15835/nbha4017314. DOI

Wojdyƚo A., Jáuregui P.N.N., Carbonell-Barrachina Á.A., Oszmiański J., Golis T. Variability of phytochemical properties and content of bioactive compounds in Lonicera caerulea L. var. kamtschatica berries. J. Agric. Food Chem. 2013;61:12072–12084. doi: 10.1021/jf404109t. PubMed DOI

Khattab R., Brooks M.S.L., Ghanem A. Phenolic analyses of haskap berries (Lonicera caerulea L.): Spectrophotometry versus high performance liquid chromatography. Int. J. Food Prop. 2016;19:1708–1725. doi: 10.1080/10942912.2015.1084316. DOI

Wang Y., Xie X., Ran X., Chou S., Jiao X., Li E., Zhang Q., Meng X., Li B. Comparative analysis of the polyphenols profiles and the antioxidant and cytotoxicity properties of various blue honeysuckle varieties. Open Chem. 2018;16:637–646. doi: 10.1515/chem-2018-0072. DOI

Zadernowski R., Naczk M., Nesterowicz J. Phenolic acid profiles in some small berries. J. Agric. Food Chem. 2005;53:2118–2124. doi: 10.1021/jf040411p. PubMed DOI

Qi Z., Zhao R., Xu J., Ge Y., Li R., Li R. Accumulation pattern of flavonoids during fruit development of Lonicera maackii determined by metabolomics. Molecules. 2021;26:6913. doi: 10.3390/molecules26226913. PubMed DOI PMC

Bae J., Kim N., Shin Y., Kim S.Y., Kim Y.J. Activity of catechins and their applications. Biomed. Dermatol. 2020;4:10. doi: 10.1186/s41702-020-0057-8. DOI

Lee J., Park G., Chang Y.H. Nutraceutical and antioxidant properties of Lonicera japonica Thumb. as affected by heating time. Int. J. Food Prop. 2019;22:630–645. doi: 10.1080/10942912.2019.1599389. DOI

Rupasinghe H.P.V., Yu L.J., Bhullar K.S., Bors B. Haskap (Lonicera caerulea): A new berry crop with high antioxidant capacity. Can. J. Plant Sci. 2012;92:1311–1317. doi: 10.4141/cjps2012-073. DOI

Chaovanalikit A., Thompson M.M., Wrolstad R.E. Characterization and quantification of anthocyanins and polyphenolics in blue honeysuckle (Lonicera caerulea L.) J. Agric. Food Chem. 2004;52:848–852. doi: 10.1021/jf030509o. PubMed DOI

Rice-Evans C.A., Miller N.J., Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997;2:152–159. doi: 10.1016/S1360-1385(97)01018-2. DOI

Behl T., Bungau S., Kumar K., Zengin G., Khan F., Kumar A., Kaur R., Venkatachalam T., Tit D.M., Vesa C.M., et al. Pleotropic effects of polyphenols in cardiovascular system. Biomed. Pharmacother. 2020;130:110714. doi: 10.1016/j.biopha.2020.110714. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...