Comparison of Testing Methods for Evaluating the Resistance of Alkali-Activated Blast Furnace Slag Systems to Sulfur Dioxide

. 2022 Feb 11 ; 15 (4) : . [epub] 20220211

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35207884

Grantová podpora
GA19-04703S Czech Science Foundation

Alkali-activated systems (AAS) represent an ecologically and economically sustainable inorganic binder as an alternative to ordinary Portland cement (OPC). One of the main benefits of AAS is their durability in aggressive environments, which can be equal or even better than that of OPC. In this paper, the influence of the type of alkaline activator in alkali-activated blast furnace slag (AAS) in terms of resistance to sulfur dioxide corrosion was investigated. The durability testing process was based on the CSN EN ISO 3231 standard and simultaneously compared with mortar samples prepared by using Blastfurnace cement CEM III/A 32.5R. The degradation progress was evaluated by employing several different methods such as observing the compressive strength development, weight change evaluation, non-destructive testing methods like ultrasound or impact echo technique, or visual phenolphthalein technique. Subsequently, fundamental characterization of samples by the XRD method was performed during the degradation test. The obtained results indicate that none of the testing methods used could be prioritized over others to determine the resistance of AAS against the action of sulfur dioxide. For this reason, the durability testing of AAS remains an issue, and the development of specific standards considering the behavior of AAS seems necessary.

Zobrazit více v PubMed

Pacheco-Torgal F., Abdollahnejad Z., Camões A., Jamshidi M., Ding Y. Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? Constr. Build. Mater. 2012;30:400–405. doi: 10.1016/j.conbuildmat.2011.12.017. DOI

Andrew R.M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data. 2019;11:1675–1710. doi: 10.5194/essd-11-1675-2019. DOI

Scrivener K., Kirkpatrick R.J. Innovation in use and research on cementitious material. Cem. Concr. Res. 2008;38:128–136. doi: 10.1016/j.cemconres.2007.09.025. DOI

Provis J.L., Van Deventer J.S.J. Alkali Activated Materials: State-of-the-Art Report. Springer; Berlin/Heidelberg, Germany: 2014. p. 381.

Shi C., Krivenko P., Roy D. Alkali-Activated Cements and Concretes. Taylor & Francis; Abington, UK: 2006. p. 376.

Madhuri G., Rao S.K. Performance of alkali-activated slag concrete against sulphuric acidattack. Asian J. Civ. Eng. 2018:1–11.

Shi C. Corrosion resistance of alkali-activated slag cement. Adv. Cem Res. 2003;15:77–81. doi: 10.1680/adcr.2003.15.2.77. DOI

Bernal S., Rodriguez E., Gutiérrez M., Provis J.L. Performance of alkali-activated slag mortars exposed to acids. J. Sustain. Cem-Based. 2012;1:138–151. doi: 10.1080/21650373.2012.747235. DOI

Bakharev T., Sanjayan J., Cheng Y.-B. Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 2002;32:211–216. doi: 10.1016/S0008-8846(01)00659-7. DOI

Rovnaník P., Bayer P., Rovnaníková P. Characterization of alkali activated slag paste after exposure to high temperatures. Constr. Build. Mater. 2013;47:1479–1487. doi: 10.1016/j.conbuildmat.2013.06.070. DOI

Niu J., Wu B., Zhu C., Yang P. Corrosion rules for ordinary concrete exposed to sulfur dioxide-containing environments. Toxicol. Environ. Chem. 2015;97:367–378. doi: 10.1080/02772248.2015.1050190. DOI

Aliques-Granero J., Tognonvi T.M., Tagnit-Hamou A. Durability test methods and their application to aams: Case of sulfu-ric-acid resistance. Mater. Struct. 2017;50:1–14. doi: 10.1617/s11527-016-0904-7. DOI

Xie Y., Lin X., Ji T., Liang Y., Pan W. Comparison of corrosion resistance mechanism between ordinary Portland concrete and alkali-activated concrete subjected to biogenic sulfuric acid attack. Constr. Build. Mater. 2019;228:117071. doi: 10.1016/j.conbuildmat.2019.117071. DOI

Gu L., Bennett T., Visintin P. Sulphuric acid exposure of conventional concrete and alkali-activated concrete: Assessment of test methodologies. Constr. Build. Mater. 2019;197:681–692. doi: 10.1016/j.conbuildmat.2018.11.166. DOI

Sturm P., Gluth G., Jäger C., Brouwers H., Kühne H.-C. Sulfuric acid resistance of one-part alkali-activated mortars. Cem. Concr. Res. 2018;109:54–63. doi: 10.1016/j.cemconres.2018.04.009. DOI

Lee N., Lee H. Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste. Cem. Concr. Compos. 2016;72:168–179. doi: 10.1016/j.cemconcomp.2016.06.004. DOI

Hewayde E., Nehdi M., Allouche E., Nakhla G. Effect of geopolymer cement on microstructure, compressive strength and sulphuric acid resistance of concrete. Mag. Concr. Res. 2006;58:321–331. doi: 10.1680/macr.2006.58.5.321. DOI

Allahverdi A., Skvara F. Sulfuric acid attack on hardened paste of geopolymer cements-Part 1. Mechanism of corrosion at relatively high concentrations. Ceram. Silik. 2005;49:225–229.

Vollertsen J., Nielsen A.H., Jensen H.S., Wium-Andersen T., Hvitved-Jacobsen T. Corrosion of concrete sewers—The kinetics of hydrogen sulfide oxidation. Sci. Total Environ. 2008;394:162–170. doi: 10.1016/j.scitotenv.2008.01.028. PubMed DOI

Lloyd R.R., Provis J.L., Van Deventer J.S.J. Acid resistance of inorganic polymer binders. 1. Corrosion rate. Mater. Struct. 2011;45:1–14. doi: 10.1617/s11527-011-9744-7. DOI

Office for Technical Standardization . Methods of Testing Cement-Part 1: Determination of Strength. CSN EN 196-1. Metrology and State Testing; Prague, Czech Republic: 2005. pp. 5–40.

Office for Technical Standardization . Paints and Varnishes—Determination of Resistance to Humid Atmospheres Containing Sulfur Dioxide. CSN EN ISO 3231. Office for Technical Standardization, Metrology and State Testing; Prague, Czech Republic: 1998. pp. 1–5.

Gade S.O., Alaca B.B., Sause M.G.R. Determination of Crack Surface Orientation in Carbon Fibre Reinforced Polymers by Measuring Electromagnetic Emission. J. Nondestruct. Evaluation. 2017;36:1–7. doi: 10.1007/s10921-017-0403-y. DOI

Plšková I., Topolář L., Komárková T., Matysík M., Chobola Z., Stoniš P. Proceedings of the Advances and Trends in Engineering Sciences and Technologies III, 12–14 September 2018, Tatranské Matliare, Slovak Republic. CRC Press; Boca Raton, FL, USA: 2019. Verification of the ability of selected acoustic methods to detect the amount of steel fibers in concrete; pp. 217–221.

Kopec B. Nedestruktivní Zkoušení Materiálů a Konstrukcí. Volume 1. Akademické nakladatelství CERM; Brno, Czech Republic: 2008. (In Czech)

Office for Technical Standardization . Zkoušení Betonu v Konstrukcích—Část 1: Vývrty—Odběr, Vyšetření a Zkoušení v Tlaku. CSN EN 12504-1 (731303) Office for Technical Standardization, Metrology and State Testing; Prague, Czech Republic: 2021. pp. 1–12.

Plšková I., Matysík M., Topolář L., Bílek V. Influence of alkali-activated materials placement during curing on their dynamic parameters. MATEC Web Conf. 2020;313:00039. doi: 10.1051/matecconf/202031300039. DOI

Majhi S., Mukherjee A., George N., Uy B. Corrosion detection in steel bar: A time-frequency approach. NDT E Int. 2019;107 doi: 10.1016/j.ndteint.2019.102150. DOI

Matysik M., Plšková I., Chobola Z. Assessment of the impact-echo method for monitoring the long-standing frost resistance of ceramic tiles. Mater. Teh. 2015;49:639–643. doi: 10.17222/mit.2014.155. DOI

Garbacz A., Piotrowski T., Courard L., Kwaśniewski L. On the evaluation of interface quality in concrete repair system by means of impact-echo signal analysis. Constr. Build. Mater. 2017;134:311–323. doi: 10.1016/j.conbuildmat.2016.12.064. DOI

Office for Technical Standardization . Nedestruktivní Zkoušení Betonu—Rezonanční Metoda Zkoušení Betonu. CSN EN 73 1372 (731372) Office for Technical Standardization, Metrology and State Testing; Prague, Czech Republic: 2012. pp. 1–16. (In Czech)

Özbay E., Erdemir M., Durmuş H.I. Utilization and efficiency of ground granulated blast furnace slag on concrete properties—A review. Constr. Build. Mater. 2016;105:423–434. doi: 10.1016/j.conbuildmat.2015.12.153. DOI

Oner A., Akyuz S. An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem. Concr. Compos. 2007;29:505–514. doi: 10.1016/j.cemconcomp.2007.01.001. DOI

Tao J., Wei X. Effect of ground granulated blast-furnace slag on the hydration and properties of cement paste. Adv. Cem. Res. 2019;31:251–260. doi: 10.1680/jadcr.17.00166. DOI

Kalina L., Bílek V., Bartoníčková E., Kalina M., Hajzler J., Novotný R. Doubts over capillary pressure theory in context with drying and autogenous shrinkage of alkali-activated materials. Constr. Build. Mater. 2020;248:118620. doi: 10.1016/j.conbuildmat.2020.118620. DOI

Bilek V., Kalina L., Novotny R., Tkacz J., Parizek L. Some issues of shrinkage-reducing admixtures application in alka-li-activated slag systems. Materials. 2016;9:462. doi: 10.3390/ma9060462. PubMed DOI PMC

Neto A.M., Cincotto M.A., Repette W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem. Concr. Res. 2008;38:565–574. doi: 10.1016/j.cemconres.2007.11.002. DOI

Wittmann F.H., Beltzung F., Zhao T.J. Shrinkage mechanisms, crack formation and service life of reinforced concrete structures. Int. J. Struct. Eng. 2009;1:13. doi: 10.1504/IJSTRUCTE.2009.030023. DOI

Collins F., Sanjayan J.G. Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete. Cement Concrete Res. 2000;30:1401–1406. doi: 10.1016/S0008-8846(00)00327-6. DOI

Palacios M., Puertas F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 2007;37:691–702. doi: 10.1016/j.cemconres.2006.11.021. DOI

Mohamed O.A. A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete. Materials. 2019;12:1198. doi: 10.3390/ma12081198. PubMed DOI PMC

Chen J.J., Thomas J.J., Jennings H.M. Decalcification shrinkage of cement paste. Cem. Concr. Res. 2006;36:801–809. doi: 10.1016/j.cemconres.2005.11.003. DOI

Komljenović M.M., Baščarević Z., Marjanović N., Nikolić V. Decalcification resistance of alkali-activated slag. J. Hazard. Mater. 2012;233-234:112–121. doi: 10.1016/j.jhazmat.2012.06.063. PubMed DOI

Bakharev T., Sanjayan J., Cheng Y.-B. Resistance of alkali-activated slag concrete to carbonation. Cem. Concr. Res. 2001;31:1277–1283. doi: 10.1016/S0008-8846(01)00574-9. DOI

Bakharev T., Sanjayan J., Cheng Y.-B. Alkali activation of Australian slag cements. Cem. Concr. Res. 1999;29:113–120. doi: 10.1016/S0008-8846(98)00170-7. DOI

Atiş C.D., Bilim C., Çelik Ö., Karahan O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr. Build. Mater. 2009;23:548–555. doi: 10.1016/j.conbuildmat.2007.10.011. DOI

Puertas F., Palacios M., Vázquez T. Carbonation process of alkali-activated slag mortars. J. Mater. Sci. 2006;41:3071–3082. doi: 10.1007/s10853-005-1821-2. DOI

Dvorak R., Topolar L., Bilek V., Hruby P. Advances in Intelligent Information Hiding and Multimedia Signal Processing. Springer International Publishing; New York, NY, USA: 2020. Study of Latent Self-healing Ability of Sodium Hydroxide Activated Blast Furnace Slag Systems via Non-destructive Measurement; pp. 915–926. DOI

Lothenbach B., Gruskovnjak A. Hydration of alkali-activated slag: Thermodynamic modelling. Adv. Cem. Res. 2007;19:81–92. doi: 10.1680/adcr.2007.19.2.81. DOI

Cornec D.L., Wang Q., Galoisy L., Renaudin G., Izoret L., Calas G. Greening effect in slag cement materials. Cem. Concr. Compos. 2017;84:93–98. doi: 10.1016/j.cemconcomp.2017.08.017. DOI

Chaouche M., Gao X.X., Cyr M., Cotte M., Frouin L. On the origin of the blue/green color of blast-furnace slag-based ma-terials: Sulfur k-edge xanes investigation. J. Am. Ceram. Soc. 2017;100:1707–1716. doi: 10.1111/jace.14670. DOI

Zhang J., Shi C., Zhang Z., Ou Z. Durability of alkali-activated materials in aggressive environments: A review on recent studies. Constr. Build. Mater. 2017;152:598–613. doi: 10.1016/j.conbuildmat.2017.07.027. DOI

Mainier F.B., Almeida P.C.F., Nani B., Fernandes L.H., Reis M.F. Corrosion Caused by Sulfur Dioxide in Reinforced Concrete. Open J. Civ. Eng. 2015;5:379–389. doi: 10.4236/ojce.2015.54038. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...