Some Issues of Shrinkage-Reducing Admixtures Application in Alkali-Activated Slag Systems
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28773584
PubMed Central
PMC5456806
DOI
10.3390/ma9060462
PII: ma9060462
Knihovny.cz E-zdroje
- Klíčová slova
- alkali activated slag, hydration, microstructure, retardation, shrinkage, shrinkage reducing admixture,
- Publikační typ
- časopisecké články MeSH
Significant drying shrinkage is one of the main limitations for the wider utilization of alkali-activated slag (AAS). Few previous works revealed that it is possible to reduce AAS drying shrinkage by the use of shrinkage-reducing admixtures (SRAs). However, these studies were mainly focused on SRA based on polypropylene glycol, while as it is shown in this paper, the behavior of SRA based on 2-methyl-2,4-pentanediol can be significantly different. While 0.25% and 0.50% had only a minor effect on the AAS properties, 1.0% of this SRA reduced the drying shrinkage of waterglass-activated slag mortar by more than 80%, but it greatly reduced early strengths simultaneously. This feature was further studied by isothermal calorimetry, mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). Calorimetric experiments showed that 1% of SRA modified the second peak of the pre-induction period and delayed the maximum of the main hydration peak by several days, which corresponds well with observed strength development as well as with the MIP and SEM results. These observations proved the certain incompatibility of SRA with the studied AAS system, because the drying shrinkage reduction was induced by the strong retardation of hydration, resulting in a coarsening of the pore structure rather than the proper function of the SRA.
Zobrazit více v PubMed
Aïtcin P.-C., Mindess S. Sustainability of Concrete. Spon Press; New York, NY, USA: 2011.
Juenger M., Winnefeld F., Provis J.L., Ideker J. Advances in alternative cementitious binders. Cem. Concr. Res. 2011;41:1232–1243. doi: 10.1016/j.cemconres.2010.11.012. DOI
Provis J.L., van Deventer J.S.J. Alkali Activated Materials. Springer; Dordrecht, The Netherlands: 2014.
Duxson P., Provis J.L., Lukey G.C., van Deventer J.S. The role of inorganic polymer technology in the development of ‘green concrete’. Cem. Concr. Res. 2007;37:1590–1597. doi: 10.1016/j.cemconres.2007.08.018. DOI
Collins F., Sanjayan J. Workability and mechanical properties of alkali activated slag concrete. Cem. Concr. Res. 1999;29:455–458. doi: 10.1016/S0008-8846(98)00236-1. DOI
Bakharev T., Sanjayan J., Cheng Y.-B. Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 2003;33:1607–1611. doi: 10.1016/S0008-8846(03)00125-X. DOI
Bakharev T., Sanjayan J., Cheng Y.-B. Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 2002;32:211–216. doi: 10.1016/S0008-8846(01)00659-7. DOI
Bernal S.A., Rodríguez E.D., de Gutiérrez R.M., Provis J.L. Performance of alkali-activated slag mortars exposed to acids. J. Sustain. Cem. Based Mater. 2012;1:138–151. doi: 10.1080/21650373.2012.747235. DOI
Wang W.-C., Wang H.-Y., Lo M.-H. The engineering properties of alkali-activated slag pastes exposed to high temperatures. Constr. Build. Mater. 2014;68:409–415. doi: 10.1016/j.conbuildmat.2014.06.016. DOI
Guerrieri M., Sanjayan J., Collins F. Residual compressive behavior of alkali-activated concrete exposed to elevated temperatures. Fire Mater. 2009;33:51–62. doi: 10.1002/fam.983. DOI
Guerrieri M., Sanjayan J., Collins F. Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater. Struct. 2010;43:765–773. doi: 10.1617/s11527-009-9546-3. DOI
San Nicolas R., Bernal S.A., de Gutiérrez R.M., van Deventer J.S., Provis J.L. Distinctive microstructural features of aged sodium silicate-activated slag concretes. Cem. Concr. Res. 2014;65:41–51. doi: 10.1016/j.cemconres.2014.07.008. DOI
Palacios M., Puertas F. Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars. Cem. Concr. Res. 2005;35:1358–1367. doi: 10.1016/j.cemconres.2004.10.014. DOI
Kashani A., Provis J.L., Xu J., Kilcullen A.R., Qiao G.G., van Deventer J.S. Effect of molecular architecture of polycarboxylate ethers on plasticizing performance in alkali-activated slag paste. J. Mater. Sci. 2014;49:2761–2772. doi: 10.1007/s10853-013-7979-0. DOI
Palacios M., Puertas F. Effectiveness of mixing time on hardened properties of waterglass-activated slag pastes and mortars. ACI Mater. J. 2011;108:73.
Collins F., Sanjayan J. Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage. Cem. Concr. Res. 2000;30:791–798. doi: 10.1016/S0008-8846(00)00243-X. DOI
Shi C., Krivenko P.V., Roy D. Alkali-Activated Cements and Concretes. Taylor & Francis; London, UK: 2006.
Collins F., Sanjayan J. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 2000;30:1401–1406. doi: 10.1016/S0008-8846(00)00327-6. DOI
Krizan D., Zivanovic B. Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cem. Concr. Res. 2002;32:1181–1188. doi: 10.1016/S0008-8846(01)00717-7. DOI
Neto A.A.M., Cincotto M.A., Repette W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem. Concr. Res. 2008;38:565–574. doi: 10.1016/j.cemconres.2007.11.002. DOI
Lee N., Jang J., Lee H. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem. Concr. Compos. 2014;53:239–248. doi: 10.1016/j.cemconcomp.2014.07.007. DOI
Scherer G.W. Drying, shrinkage, and cracking of cementitious materials. Transp. Porous Media. 2015;110:311–331. doi: 10.1007/s11242-015-0518-5. DOI
Aydın S. A ternary optimisation of mineral additives of alkali activated cement mortars. Constr. Build. Mater. 2013;43:131–138. doi: 10.1016/j.conbuildmat.2013.02.005. DOI
Bilek V., Parizek L., Kalina L. Effect of the by-pass cement kiln dust and fluidized bed combustion fly ash on properties of fine-grained alkali-activated slag-based composites. Mater. Tehnol. 2015;49:549–552. doi: 10.17222/mit.2014.162. DOI
Chi M., Huang R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr. Build. Mater. 2013;40:291–298. doi: 10.1016/j.conbuildmat.2012.11.003. DOI
Marjanović N., Komljenović M., Baščarević Z., Nikolić V., Petrović R. Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends. Ceram. Int. 2015;41:1421–1435. doi: 10.1016/j.ceramint.2014.09.075. DOI
Bakharev T., Sanjayan J., Cheng Y.-B. Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cem. Concr. Res. 1999;29:1619–1625. doi: 10.1016/S0008-8846(99)00143-X. DOI
Aydin S., Baradan B. Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater. Des. 2012;35:374–383. doi: 10.1016/j.matdes.2011.10.005. DOI
Chi M. Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Constr. Build. Mater. 2012;35:240–245. doi: 10.1016/j.conbuildmat.2012.04.005. DOI
Sakulich A., Bentz D. Mitigation of autogenous shrinkage in alkali activated slag mortars by internal curing. Mater. Struct. 2013;46:1355–1367. doi: 10.1617/s11527-012-9978-z. DOI
Aydın S., Baradan B. The effect of fiber properties on high performance alkali-activated slag/silica fume mortars. Compos. Part B Eng. 2013;45:63–69. doi: 10.1016/j.compositesb.2012.09.080. DOI
Alcaide J., Alcocel E., Puertas F., Lapuente R., Garcés P. Carbon fibre-reinforced, alkali-activated slag mortars. Mater. Constr. 2007;57:33–48.
Puertas F., Gil-Maroto A., Palacios M., Amat T. Alkali-activated slag mortars reinforced with ar glassfibre. Performance and properties. Mater. Constr. 2006;56:79–90.
Shen W.G., Wang Y.H., Zhang T., Zhou M.K., Li J.S., Cui X.Y. Magnesia modification of alkali-activated slag fly ash cement. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011;26:121–125. doi: 10.1007/s11595-011-0182-8. DOI
Yuan X.-H., Chen W., Lu Z.-A., Chen H. Shrinkage compensation of alkali-activated slag concrete and microstructural analysis. Constr. Build. Mater. 2014;66:422–428. doi: 10.1016/j.conbuildmat.2014.05.085. DOI
Chang J.J., Yeih W., Hung C.C. Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes. Cem. Concr. Compos. 2005;27:85–91. doi: 10.1016/j.cemconcomp.2003.12.001. DOI
Rajabipour F., Sant G., Weiss J. Interactions between shrinkage reducing admixtures (sra) and cement paste's pore solution. Cem. Concr. Res. 2008;38:606–615. doi: 10.1016/j.cemconres.2007.12.005. DOI
Saliba J., Roziere E., Grondin F., Loukili A. Influence of shrinkage-reducing admixtures on plastic and long-term shrinkage. Cem. Concr. Compos. 2011;33:209–217. doi: 10.1016/j.cemconcomp.2010.10.006. DOI
Bian R., Jian S. Synthesis and evaluation of shrinkage-reducing admixture for cementitious materials. Cem. Concr. Res. 2005;35:445–448.
Folliard K.J., Berke N.S. Properties of high-performance concrete containing shrinkage-reducing admixture. Cem. Concr. Res. 1997;27:1357–1364. doi: 10.1016/S0008-8846(97)00135-X. DOI
Sant G., Lothenbach B., Juilland P., Le Saout G., Weiss J., Scrivener K. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures. Cem. Concr. Res. 2011;41:218–229. doi: 10.1016/j.cemconres.2010.12.004. DOI
Palacios M., Puertas F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 2007;37:691–702. doi: 10.1016/j.cemconres.2006.11.021. DOI
Bilim C., Karahan O., Atis C.D., Ilkentapar S. Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions. Mater. Des. 2013;44:540–547. doi: 10.1016/j.matdes.2012.08.049. DOI
Bakharev T., Sanjayan J.G., Cheng Y.B. Effect of admixtures on properties of alkali-activated slag concrete. Cem. Concr. Res. 2000;30:1367–1374. doi: 10.1016/S0008-8846(00)00349-5. DOI
Abell A.B., Willis K.L., Lange D.A. Mercury intrusion porosimetry and image analysis of cement-based materials. J. Colloid Interface Sci. 1999;211:39–44. doi: 10.1006/jcis.1998.5986. PubMed DOI
Eberhardt A.B. Ph.D. Thesis. Bauhaus Universität Weimar; Weimar, Germany: 2011. On the Mechanisms of Shrinkage Reducing Admixtures in Self Consolidationg Mortars and Concretes.
Aïtcin P.C., Flatt R.J. Science and Technology of Concrete Admixtures. Woodhead Publishing; Sawston, Cambridge, UK: 2015.
Bílek V., Jr., Kalina L., Koplík J., Hajdúchová M., Radoslav N. Effect of combination of fly ash and shrinkage reducing additives on properties of alkali activated slag based mortars. Mater. Tehnol. 2016 in press.
Shi C.J., Day R.L. A calorimetric study of early hydration of alkali-slag cements. Cem. Concr. Res. 1995;25:1333–1346. doi: 10.1016/0008-8846(95)00126-W. DOI
Ravikumar D., Neithalath N. Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry. Thermochim. Acta. 2012;546:32–43. doi: 10.1016/j.tca.2012.07.010. DOI
Diamond S. Mercury porosimetry-an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 2000;30:1517–1525. doi: 10.1016/S0008-8846(00)00370-7. DOI
Cook R.A., Hover K.C. Mercury porosimetry of hardened cement pastes. Cem. Concr. Res. 1999;29:933–943. doi: 10.1016/S0008-8846(99)00083-6. DOI
Bulejko P., Bílek V., Jr. Influence of chemical additives and curing conditions on mechanical properties and carbonation resistance of alkali-activated slag composites. Mater. Tehnol. 2017 in press.
Experimental Study of Slag Changes during the Very Early Stages of Its Alkaline Activation