Correlating Hydration of Alkali-Activated Slag Modified by Organic Additives to the Evolution of Its Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA20-26896S
Czech Science Foundation
PubMed
36903022
PubMed Central
PMC10004509
DOI
10.3390/ma16051908
PII: ma16051908
Knihovny.cz E-zdroje
- Klíčová slova
- alkali-activated slag, calorimetry, color change, microstructure, organic admixture, pore solution, retardation, setting, shrinkage,
- Publikační typ
- časopisecké články MeSH
This study investigates the relationships between the hydration kinetics of waterglass-activated slag and the development of its physical-mechanical properties, as well as its color change. To modify the calorimetric response of alkali-activated slag, hexylene glycol was selected from various alcohols for in-depth experiments. In presence of hexylene glycol, the formation of initial reaction products was restricted to the slag surface, which drastically slowed down the further consumption of dissolved species and slag dissolution and consequently delayed the bulk hydration of the waterglass-activated slag by several days. This allowed to show that the corresponding calorimetric peak is directly related to the rapid evolution of the microstructure and physical-mechanical parameters and to the onset of a blue/green color change recorded as a time-lapse video. Workability loss was correlated with the first half of the second calorimetric peak, while the most rapid increase in strengths and autogenous shrinkage was related to the third calorimetric peak. Ultrasonic pulse velocity increased considerably during both the second and third calorimetric peak. Despite the modified morphology of the initial reaction products, the prolonged induction period, and the slightly reduced degree of hydration induced by hexylene glycol, the overall mechanism of alkaline activation remained unchanged in the long-term perspective. It was hypothesized that the main issue of the use of organic admixtures in alkali-activated systems is the destabilizing effect of these admixtures on soluble silicates introduced into the system with an activator.
Zobrazit více v PubMed
Provis J.L. Alkali-activated materials. Cem. Concr. Res. 2018;114:40–48. doi: 10.1016/j.cemconres.2017.02.009. DOI
Shi C., Krivenko P.V., Roy D. Alkali-Activated Cements and Concretes. Taylor & Francis; London, UK: 2006.
Song S., Jennings H.M. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem. Concr. Res. 1999;29:159–170. doi: 10.1016/S0008-8846(98)00212-9. DOI
Zuo Y., Ye G. Preliminary Interpretation of the Induction Period in Hydration of Sodium Hydroxide/Silicate Activated Slag. Materials. 2020;13:4796. doi: 10.3390/ma13214796. PubMed DOI PMC
Myers R.J., Bernal S.A., San Nicolas R., Provis J.L. Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross-linked substituted tobermorite model. Langmuir. 2013;29:5294–5306. doi: 10.1021/la4000473. PubMed DOI
Lothenbach B., Gruskovnjak A. Hydration of alkali-activated slag: Thermodynamic modelling. Adv. Cem. Res. 2007;19:81–92. doi: 10.1680/adcr.2007.19.2.81. DOI
Shi C., Day R.L. A calorimetric study of early hydration of alkali-slag cement. Cem. Concr. Res. 1995;25:1333–1346. doi: 10.1016/0008-8846(95)00126-W. DOI
Ravikumar D., Neithalath N. Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry. Thermochim. Acta. 2012;546:32–43. doi: 10.1016/j.tca.2012.07.010. DOI
Gebregziabiher B.S., Thomas R.J., Peethamparan S. Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Constr. Build. Mater. 2016;113:783–793. doi: 10.1016/j.conbuildmat.2016.03.098. DOI
Fernández Jiménez A., Puertas F. Setting of alkali-activated slag cement. Influence of activator nature. Adv. Cem. Res. 2001;13:115–121. doi: 10.1680/adcr.2001.13.3.115. DOI
Bernal S.A., Provis J.L., Myers R.J., San Nicolas R., van Deventer J.S.J. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Mater. Struct. 2014;48:517–529. doi: 10.1617/s11527-014-0412-6. DOI
Sun Z., Vollpracht A. Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag. Cem. Concr. Res. 2018;103:110–122. doi: 10.1016/j.cemconres.2017.10.004. DOI
Lu C., Zhang Z., Shi C., Li N., Jiao D., Yuan Q. Rheology of alkali-activated materials: A review. Cem. Concr. Compos. 2021;121:104061. doi: 10.1016/j.cemconcomp.2021.104061. DOI
Melo Neto A.A., Cincotto M.A., Repette W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem. Concr. Res. 2008;38:565–574. doi: 10.1016/j.cemconres.2007.11.002. DOI
Collins F., Sanjayan J.G. Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete. Cem. Concr. Res. 2000;30:1401–1406. doi: 10.1016/S0008-8846(00)00327-6. DOI
Palacios M., Puertas F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 2007;37:691–702. doi: 10.1016/j.cemconres.2006.11.021. DOI
Bilek V., Kalina L., Novotny R., Tkacz J., Parizek L. Some Issues of Shrinkage-Reducing Admixtures Application in Alkali-Activated Slag Systems. Materials. 2016;9:462. doi: 10.3390/ma9060462. PubMed DOI PMC
Kalina L., Bílek V., Bartoníčková E., Kalina M., Hajzler J., Novotný R. Doubts over capillary pressure theory in context with drying and autogenous shrinkage of alkali-activated materials. Constr. Build. Mater. 2020;248:118620. doi: 10.1016/j.conbuildmat.2020.118620. DOI
Bílek V., Kalina L., Novotný R. Polyethylene glycol molecular weight as an important parameter affecting drying shrinkage and hydration of alkali-activated slag mortars and pastes. Constr. Build. Mater. 2018;166:564–571. doi: 10.1016/j.conbuildmat.2018.01.176. DOI
Qu Z.Y., Yu Q., Ji Y.D., Gauvin F., Voets I.K. Mitigating shrinkage of alkali activated slag with biofilm. Cem. Concr. Res. 2020;138:106234. doi: 10.1016/j.cemconres.2020.106234. DOI
Li Z., Wyrzykowski M., Dong H., Granja J., Azenha M., Lura P., Ye G. Internal curing by superabsorbent polymers in alkali-activated slag. Cem. Concr. Res. 2020;135:106123. doi: 10.1016/j.cemconres.2020.106123. DOI
Li Z., Lu T., Liang X., Dong H., Ye G. Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes. Cem. Concr. Res. 2020;135:106107. doi: 10.1016/j.cemconres.2020.106107. DOI
Van Deventer J.S.J., Duxson P., Brice D.G., Kilcullen A. Settable Composition Comprising Slag. WO 2012/083384 A1. 2012
Chaouche M., Gao X.X., Cyr M., Cotte M., Frouin L. On the origin of the blue/green color of blast-furnace slag-based materials: Sulfur K-edge XANES investigation. J. Am. Ceram. Soc. 2017;100:1707–1716. doi: 10.1111/jace.14670. DOI
Ballekere Kumarappa D., Peethamparan S., Ngami M. Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods. Cem. Concr. Res. 2018;109:91. doi: 10.1016/j.cemconres.2018.04.004. DOI
Ma H., Zhu H., Chen H., Ni Y., Xu X., Huo Q. Shrinkage-reducing measures and mechanisms analysis for alkali-activated coal gangue-slag mortar at room temperature. Constr. Build. Mater. 2020;252:119001. doi: 10.1016/j.conbuildmat.2020.119001. DOI
Beersaerts G., Ascensão G., Pontikes Y. Modifying the pore size distribution in Fe-rich inorganic polymer mortars: An effective shrinkage mitigation strategy. Cem. Concr. Res. 2021;141:106330. doi: 10.1016/j.cemconres.2020.106330. DOI
Methods of Testing Cement—Part 3: Determination of Setting Times and Soundness. Czech Office for Standards, Metrology and Testing; Prague, Czech Republic: 2017.
Dakhane A., Peng Z., Marzke R., Neithalath N. Comparative Analysis of the Influence of Sodium and Potassium Silicate Solutions on the Kinetics and Products of Slag Activation. Adv. Civ. Eng. Mater. 2014;3:371–387. doi: 10.1520/ACEM20140005. DOI
Tänzer R., Jin Y., Stephan D. Alkali activated slag binder: Effect of cations from silicate activators. Mater. Struct. 2016;50:1–9. doi: 10.1617/s11527-016-0961-y. DOI
Brough A.R., Atkinson A. Sodium silicate-based, alkali-activated slag mortars Part I. Strength, hydration and microstructure. Cem. Concr. Res. 2002;32:865–879. doi: 10.1016/S0008-8846(02)00717-2. DOI
Brough A.R., Holloway M., Sykes J., Atkinson A. Sodium silicate-based alkali-activated slag mortars Part II. The retarding effect of additions of sodium chloride or malic acid. Cem. Concr. Res. 2000;30:1375–1379. doi: 10.1016/S0008-8846(00)00356-2. DOI
Bílek Jr. V., Kadlec M., Novotný R., Kalina L., Hrubý P. Novel perspective to explain the retarding effect of organic admixtures in silicate-activated slag; Proceedings of the SP-354: Superplasticizers and Other Chemical Admixtures in Concrete; Milan, Italy. 10–13 July 2022; pp. 49–60.
Lu Z., Merkl J.P., Pulkin M., Firdous R., Wache S., Stephan D. A Systematic Study on Polymer-Modified Alkali-Activated Slag-Part II: From Hydration to Mechanical Properties. Materials. 2020;13:3418. doi: 10.3390/ma13153418. PubMed DOI PMC
Wang S.-D., Scrivener K.l. Hydration products of alkali activated slag cement. Cem. Concr. Res. 1995;25:561–571. doi: 10.1016/0008-8846(95)00045-E. DOI
Ben Haha M., Le Saout G., Winnefeld F., Lothenbach B. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 2011;41:301–310. doi: 10.1016/j.cemconres.2010.11.016. DOI
Yan Y., Ma B., Miron G.D., Kulik D.A., Scrivener K., Lothenbach B. Al uptake in calcium silicate hydrate and the effect of alkali hydroxide. Cem. Concr. Res. 2022;162:106957. doi: 10.1016/j.cemconres.2022.106957. DOI
Kapeluszna E., Kotwica Ł., Różycka A., Gołek Ł. Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Constr. Build. Mater. 2017;155:643–653. doi: 10.1016/j.conbuildmat.2017.08.091. DOI
Scrivener K., Snellings R., Lothenbach B. A Practical Guide to Microstructural Analysis of Cementitious Materials. 1st ed. CRC Press; Boca Raton, FL, USA: 2016.
Ben Haha M., Lothenbach B., Le Saout G., Winnefeld F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: Effect of MgO. Cem. Concr. Res. 2011;41:955–963. doi: 10.1016/j.cemconres.2011.05.002. DOI
Ben Haha M., Lothenbach B., Le Saout G., Winnefeld F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: Effect of Al2O3. Cem. Concr. Res. 2012;42:74–83. doi: 10.1016/j.cemconres.2011.08.005. DOI
Myers R.J., L’Hôpital E., Provis J.L., Lothenbach B. Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions. Cem. Concr. Res. 2015;68:83–93. doi: 10.1016/j.cemconres.2014.10.015. DOI
Zhang J., Scherer G.W. Comparison of methods for arresting hydration of cement. Cem. Concr. Res. 2011;41:1024–1036. doi: 10.1016/j.cemconres.2011.06.003. DOI
Sun Y., Zhang S., Rahul A.V., Tao Y., Van Bockstaele F., Dewettinck K., Ye G., De Schutter G. Rheology of alkali-activated slag pastes: New insight from microstructural investigations by cryo-SEM. Cem. Concr. Res. 2022;157:106806. doi: 10.1016/j.cemconres.2022.106806. DOI
Dai X., Aydin S., Yardimci M.Y., De Schutter G. Early structural build-up, setting behavior, reaction kinetics and microstructure of sodium silicate-activated slag mixtures with different retarder chemicals. Cem. Concr. Res. 2022;159:106872. doi: 10.1016/j.cemconres.2022.106872. DOI
Criado M., Walkley B., Ke X., Provis J., Bernal S. Slag and Activator Chemistry Control the Reaction Kinetics of Sodium Metasilicate-Activated Slag Cements. Sustainability. 2018;10:4709. doi: 10.3390/su10124709. DOI
Le Cornec D., Wang Q., Galoisy L., Renaudin G., Izoret L., Calas G. Greening effect in slag cement materials. Cem. Concr. Compos. 2017;84:93–98. doi: 10.1016/j.cemconcomp.2017.08.017. DOI