Experimental Study of Slag Changes during the Very Early Stages of Its Alkaline Activation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA20-26896S
Czech Science Foundation
PubMed
35009376
PubMed Central
PMC8746217
DOI
10.3390/ma15010231
PII: ma15010231
Knihovny.cz E-zdroje
- Klíčová slova
- BET surface, activator, alkali-activated slag, hydration kinetics, hydration products, morphology, pore solution, scanning electron microscopy, setting,
- Publikační typ
- časopisecké články MeSH
The very early stages of alkaline activation of slag control its rheology and setting, but also affect its hydration, which occurs later. Simultaneously, these parameters are dictated by the nature and dose of the alkaline activator. Therefore, we investigated and compared the changes in slag particles (SEM, BET, laser diffraction), as well as in the pore solution composition (ICP-OES), pH, and conductivity, of alkali-activated slag (AAS) pastes containing the three most common sodium activators (waterglass, hydroxide, and carbonate) and water during the first 24 h of its activation. To ensure the best possible comparability of the pastes, a fairly nontraditional mixture design was adopted, based on the same concentration of Na+ (4 mol/dm3) and the same volume fraction of slag in the paste (0.50). The results were correlated with the pastes' hydration kinetics (isothermal calorimetry), structural build-up (oscillatory rheology), and setting times (Vicat). Great differences were observed in most of these properties, in the formation of hydration products, and in the composition of the pore solution for each activator. The results emphasize the role of the anionic groups in the activators and of the pH, which help predict the sample's behavior based on its calorimetric curve, and offer data for further comparisons and for the modelling of AAS hydration for specific activators.
Zobrazit více v PubMed
Provis J.L., van Deventer J.S.J. Alkali Activated Materials State-of-the-Art Report, RILEM TC 224-AAM. Springer; Berlin/Heidelberg, Germany: 2014.
Provis J.L. Alkali-activated materials. Cem. Concr. Res. 2018;114:40–48. doi: 10.1016/j.cemconres.2017.02.009. DOI
Bakharev T., Sanjayan J.G., Cheng Y.B. Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 2003;33:1607–1611. doi: 10.1016/S0008-8846(03)00125-X. DOI
Bernal S.A., Rodríguez E.D., Mejía de Gutiérrez R., Provis J.L. Performance of alkali-activated slag mortars exposed to acids. J. Sustain. Cem. Based. Mater. 2012;1:138–151. doi: 10.1080/21650373.2012.747235. DOI
Komljenović M., Baščarević Z., Marjanović N., Nikolić V. External sulfate attack on alkali-activated slag. Constr. Build. Mater. 2013;49:31–39. doi: 10.1016/j.conbuildmat.2013.08.013. DOI
Bakharev T., Sanjayan J.G., Cheng Y.-B. Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 2002;32:211–216. doi: 10.1016/S0008-8846(01)00659-7. DOI
Komljenovic M.M., Bascarevic Z., Marjanovic N., Nikolic V. Decalcification resistance of alkali-activated slag. J. Hazard. Mater. 2012;233–234:112–121. doi: 10.1016/j.jhazmat.2012.06.063. PubMed DOI
Varga C., Alonso M.M., Mejía de Gutierrez R., Mejía J., Puertas F. Decalcification of alkali-activated slag pastes. Effect of the chemical composition of the slag. Mater. Struct. 2014;48:541–555. doi: 10.1617/s11527-014-0422-4. DOI
Shi C., Krivenko P.V., Roy D. Alkali-Activated Cements and Concretes. CRC Press; Boca Raton, FL, USA: 2006.
Pacheco-Torgal F., Abdollahnejad Z., Camões A.F., Jamshidi M., Ding Y. Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? Constr. Build. Mater. 2012;30:400–405. doi: 10.1016/j.conbuildmat.2011.12.017. DOI
Pan Z., Sanjayan J.G., Kong D.L.Y. Effect of aggregate size on spalling of geopolymer and Portland cement concretes subjected to elevated temperatures. Constr. Build. Mater. 2012;36:365–372. doi: 10.1016/j.conbuildmat.2012.04.120. DOI
Zhao R., Sanjayan J.G. Geopolymer and Portland cement concretes in simulated fire. Mag. Concr. Res. 2011;63:163–173. doi: 10.1680/macr.9.00110. DOI
Provis J.L. Geopolymers—Structure, Processing, Properties and Industrial Applications. 1st ed. Woodhead Publishing; Cambridge, UK: 2009.
Rashad A.M., Bai Y., Basheer P.A.M., Collier N.C., Milestone N.B. Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem. Concr. Res. 2012;42:333–343. doi: 10.1016/j.cemconres.2011.10.007. DOI
San Nicolas R., Bernal S.A., Mejía de Gutiérrez R., van Deventer J.S.J., Provis J.L. Distinctive microstructural features of aged sodium silicate-activated slag concretes. Cem. Concr. Res. 2014;65:41–51. doi: 10.1016/j.cemconres.2014.07.008. DOI
Melo Neto A.A., Cincotto M.A., Repette W. Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem. Concr. Res. 2008;38:565–574. doi: 10.1016/j.cemconres.2007.11.002. DOI
Palacios M., Puertas F. Effectiveness of Mixing Time on Hardened Properties of Waterglass-Activated Slag Pastes and Mortars. ACI Mater. J. 2011;108:73–78.
Pacheco-Torgal F., Labrincha J., Leonelli C., Palomo A., Chindaprasirt P. Handbook of Alkali-Activated Cements, Mortars and Concretes. 1st ed. Woodhead Publishing; Cambridge, UK: 2014.
Zhang S., Li Z., Ghiassi B., Yin S., Ye G. Fracture properties and microstructure formation of hardened alkali-activated slag/fly ash pastes. Cem. Concr. Res. 2021;144:106447. doi: 10.1016/j.cemconres.2021.106447. DOI
Fang G., Bahrami H., Zhang M. Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h. Constr. Build. Mater. 2018;171:377–387. doi: 10.1016/j.conbuildmat.2018.03.155. DOI
Nedeljkovic M., Li Z., Ye G. Setting, Strength, and Autogenous Shrinkage of Alkali-Activated Fly Ash and Slag Pastes: Effect of Slag Content. Materials. 2018;11:2121. doi: 10.3390/ma11112121. PubMed DOI PMC
Jang J.G., Lee N.K., Lee H.K. Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Constr. Build. Mater. 2014;50:169–176. doi: 10.1016/j.conbuildmat.2013.09.048. DOI
Marjanović N., Komljenović M., Baščarević Z., Nikolić V., Petrović R. Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends. Ceram. Int. 2015;41:1421–1435. doi: 10.1016/j.ceramint.2014.09.075. DOI
Lu C., Zhang Z., Shi C., Li N., Jiao D., Yuan Q. Rheology of alkali-activated materials: A review. Cem. Concr. Compos. 2021;121:104061. doi: 10.1016/j.cemconcomp.2021.104061. DOI
Kovalchuk G., Fernández-Jiménez A., Palomo A. Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development—Part II. Fuel. 2007;86:315–322. doi: 10.1016/j.fuel.2006.07.010. DOI
Bakharev T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 2005;35:1224–1232. doi: 10.1016/j.cemconres.2004.06.031. DOI
Duxson P., Provis J.L. Designing Precursors for Geopolymer Cements. J. Am. Ceram. Soc. 2008;91:3864–3869. doi: 10.1111/j.1551-2916.2008.02787.x. DOI
Nie S., Thomsen R.M., Skibsted J. Impact of Mg substitution on the structure and pozzolanic reactivity of calcium aluminosilicate (CaO-Al2O3-SiO2) glasses. Cem. Concr. Res. 2020;138:106231. doi: 10.1016/j.cemconres.2020.106231. DOI
Blotevogel S., Montouillout V., Canizares A., Simon P., Chesneau E., Danezan A., Wattez T., Ehrenberg A., Poirier M., Patapy C., et al. Glass structure of industrial ground granulated blast furnace slags (GGBS) investigated by time-resolved Raman and NMR spectroscopies. J. Mater. Sci. 2021;56:17490–17504. doi: 10.1007/s10853-021-06446-4. DOI
Zuo Y., Ye G. Lattice Boltzmann simulation of the dissolution of slag in alkaline solution using real-shape particles. Cem. Concr. Res. 2021;140:106313. doi: 10.1016/j.cemconres.2020.106313. DOI
Blotevogel S., Steger L., Hart D., Doussang L., Kaknics J., Poirier M., Bornhöft H., Deubener J., Patapy C., Cyr M. Effect of TiO2 and 11 minor elements on the reactivity of ground-granulated blast-furnace slag in blended cements. J. Am. Ceram. Soc. 2020;104:128–139. doi: 10.1111/jace.17431. DOI
Zuo Y., Nedeljković M., Ye G. Coupled thermodynamic modelling and experimental study of sodium hydroxide activated slag. Constr. Build. Mater. 2018;188:262–279. doi: 10.1016/j.conbuildmat.2018.08.087. DOI
Zuo Y., Ye G. Preliminary Interpretation of the Induction Period in Hydration of Sodium Hydroxide/Silicate Activated Slag. Materials. 2020;13:4796. doi: 10.3390/ma13214796. PubMed DOI PMC
Wagner T., Kulik D.A., Hingerl F.F., Dmytrieva S.V. GEM-Selektor Geochemical Modeling Package: TSolMod Library and Data Interafce for Multicomponent Phase Models. Can. Mineral. 2012;50:1173–1195. doi: 10.3749/canmin.50.5.1173. DOI
Kulik D.A., Wagner T., Dmytrieva S.V., Kosakowski G., Hingerl F.F., Chudnenko K.V., Berner U.R. GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computat. Geosci. 2012;17:1–24. doi: 10.1007/s10596-012-9310-6. DOI
Myers R.J., Bernal S.A., Provis J.L. A thermodynamic model for C-(N-)A-S-H gel: CNASH_ss. Derivation and validation. Cem. Concr. Res. 2014;66:27–47. doi: 10.1016/j.cemconres.2014.07.005. DOI
Garcia-Lodeiro I., Palomo A., Fernández-Jiménez A., Macphee D.E. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O. Cem. Concr. Res. 2011;41:923–931. doi: 10.1016/j.cemconres.2011.05.006. DOI
Zhou Y., Hou D., Manzano H., Orozco C.A., Geng G., Monteiro P.J.M., Liu J. Interfacial Connection Mechanisms in Calcium−Silicate−Hydrates/Polymer Nanocomposites: A Molecular Dynamics Study. ACS Appl. Mater. Inter. 2017;9:41014–41025. doi: 10.1021/acsami.7b12795. PubMed DOI
Zhou Y., Cai J., Chen R., Hou D., Xu J., Lv K., Zheng Q. The design and evaluation of a smart polymer-based fluids transport inhibitor. J. Clean. Prod. 2020;257:120528. doi: 10.1016/j.jclepro.2020.120528. DOI
Zhou Y., Tang L., Liu J., Miao C. Interaction mechanisms between organic and inorganic phases in calcium silicate hydrates/poly(vinyl alcohol) composites. Cem. Concr. Res. 2019;125:105891. doi: 10.1016/j.cemconres.2019.105891. DOI
Bernal S.A., Provis J.L., Myers R.J., San Nicolas R., van Deventer J.S.J. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Mater. Struct. 2014;48:517–529. doi: 10.1617/s11527-014-0412-6. DOI
Kashani A., Provis J.L., Qiao G.G., van Deventer J.S.J. The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr. Build. Mater. 2014;65:583–591. doi: 10.1016/j.conbuildmat.2014.04.127. DOI
Palacios M., Gismera S., Alonso M.M., d’Espinose de Lacaillerie J.B., Lothenbach B., Favier A., Brumaud C., Puertas F. Early reactivity of sodium silicate-activated slag pastes and its impact on rheological properties. Cem. Concr. Res. 2021;140:106302. doi: 10.1016/j.cemconres.2020.106302. DOI
Mantellato S., Palacios M., Flatt R.J. Reliable specific surface area measurements on anhydrous cements. Cem. Concr. Res. 2015;67:286–291. doi: 10.1016/j.cemconres.2014.10.009. DOI
Shi C., Day R.L. A calorimetric study of early hydration of alkali-slag cement. Cem. Concr. Res. 1995;25:1333–1346. doi: 10.1016/0008-8846(95)00126-W. DOI
Deir E., Gebregziabiher B.S., Peethamparan S. Influence of starting material on the early age hydration kinetics, microstructure and composition of binding gel in alkali activated binder systems. Cem. Concr. Compos. 2014;48:108–117. doi: 10.1016/j.cemconcomp.2013.11.010. DOI
Gebregziabiher B.S., Thomas R., Peethamparan S. Very early-age reaction kinetics and microstructural development in alkali-activated slag. Cem. Concr. Compos. 2015;55:91–102. doi: 10.1016/j.cemconcomp.2014.09.001. DOI
Gebregziabiher B.S., Thomas R.J., Peethamparan S. Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Constr. Build. Mater. 2016;113:783–793. doi: 10.1016/j.conbuildmat.2016.03.098. DOI
Bilek V., Kalina L., Novotny R., Tkacz J., Parizek L. Some Issues of Shrinkage-Reducing Admixtures Application in Alkali-Activated Slag Systems. Materials. 2016;9:462. doi: 10.3390/ma9060462. PubMed DOI PMC
Ravikumar D., Neithalath N. Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry. Thermochim. Acta. 2012;546:32–43. doi: 10.1016/j.tca.2012.07.010. DOI
Chithiraputhiran S., Neithalath N. Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr. Build. Mater. 2013;45:233–242. doi: 10.1016/j.conbuildmat.2013.03.061. DOI
Yuan B., Yu Q.L., Brouwers H.J.H. Evaluation of slag characteristics on the reaction kinetics and mechanical properties of N2CO3 activated slag. Constr. Build. Mater. 2017;131:334–346. doi: 10.1016/j.conbuildmat.2016.11.074. DOI
Fernández Jiménez A., Puertas F. Setting of alkali-activated slag cement. Influence of activator nature. Adv. Cem. Res. 2001;13:115–121. doi: 10.1680/adcr.2001.13.3.115. DOI
Brough A.R., Atkinson A. Sodium silicate-based, alkali-activated slag mortars Part I. Strength, hydration and microstructure. Cem. Concr. Res. 2002;32:865–879. doi: 10.1016/S0008-8846(02)00717-2. DOI
Brough A.R., Holloway M., Sykes J., Atkinson A. Sodium silicate-based alkali-activated slag mortars Part II. The retarding effect of additions of sodium chloride or malic acid. Cem. Concr. Res. 2000;30:1375–1379. doi: 10.1016/S0008-8846(00)00356-2. DOI
Ke X., Bernal S.A., Provis J.L. Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides. Cem. Concr. Res. 2016;81:24–37. doi: 10.1016/j.cemconres.2015.11.012. DOI
Dai X., Aydin S., Yardimci M.Y., Qiang R.E.N., Lesage K. Rheology, early-age hydration and microstructure of alkali-activated GGBFS-Fly ash-limestone mixtures. Cem. Concr. Compos. 2021;124:104244. doi: 10.1016/j.cemconcomp.2021.104244. DOI
Yuan Q., Lu X., Khayat K.H., Feys D., Shi C. Small amplitude oscillatory shear technique to evaluate structural build-up of cement paste. Mater. Struct. 2016;50:112. doi: 10.1617/s11527-016-0978-2. DOI
Habbaba A., Plank J. Interaction Between Polycarboxylate Superplasticizers and Amorphous Ground Granulated Blast Furnace Slag. J. Am. Ceram. Soc. 2010;93:2857–2863. doi: 10.1111/j.1551-2916.2010.03755.x. DOI
Newlands K.C., Foss M., Matchei T., Skibsted J., Macphee D.E. Early stage dissolution characteristics of aluminosilicate glasses with blast furnace slag- and fly-ash-like compositions. J. Am. Ceram. Soc. 2017;100:1941–1955. doi: 10.1111/jace.14716. DOI
Palacios M., Banfill P.F.G., Puertas F. Rheology and Setting of Alkali-Activated Slag Pastes and Mortars: Effect of Organic Admixture. ACI Mater. J. 2008;105:140.
Chang J.J. A study on the setting characteristics of sodium silicate-activated slag pastes. Cem. Concr. Res. 2003;33:1005–1011. doi: 10.1016/S0008-8846(02)01096-7. DOI
Ben Haha M., Le Saout G., Winnefeld F., Lothenbach B. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem. Concr. Res. 2011;41:301–310. doi: 10.1016/j.cemconres.2010.11.016. DOI
Tashima M.M., Reig L., Santini M.A., Moraes J.C.B., Akasaki J.L., Payá J., Borrachero M.V., Soriano L. Compressive Strength and Microstructure of Alkali-Activated Blast Furnace Slag/Sewage Sludge Ash (GGBS/SSA) Blends Cured at Room Temperature. Waste Biomass Valori. 2016;8:1441–1451. doi: 10.1007/s12649-016-9659-1. DOI
Dai X., Aydın S., Yardımcı M.Y., Lesage K., De Schutter G. Effects of activator properties and GGBFS/FA ratio on the structural build-up and rheology of AAC. Cem. Concr. Res. 2020;138:106253. doi: 10.1016/j.cemconres.2020.106253. DOI
Zuo Y., Nedeljković M., Ye G. Pore solution composition of alkali-activated slag/fly ash pastes. Cem. Concr. Res. 2019;115:230–250. doi: 10.1016/j.cemconres.2018.10.010. DOI
Gruskovnjak A., Lothenbach B., Holzer L., Figi R., Winnefeld F. Hydration of alkali-activated slag: Comparison with ordinary Portland cement. Adv. Cem. Res. 2006;18:119–128. doi: 10.1680/adcr.2006.18.3.119. DOI
Myers R.J., Lothenbach B., Bernal S.A., Provis J.L. Thermodynamic modelling of alkali-activated slag cements. Appl. Geochem. 2015;61:233–247. doi: 10.1016/j.apgeochem.2015.06.006. DOI