On anammox activity at low temperature: effect of ladderane composition and process conditions
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
Grant support
NWO_VI.VENI.192.252
Dutch Research Council - Netherlands
PubMed
35794882
PubMed Central
PMC7612987
DOI
10.1016/j.cej.2022.136712
PII: 136712
Knihovny.cz E-resources
- Keywords
- activation energy, adaptation to low temperature, anaerobic ammonium oxidation, anammox activity, anammox genus, ladderane phospholipid,
- Publication type
- Journal Article MeSH
The application of partial nitritation-anammox (PN/A) under mainstream conditions can enable substantial cost savings at wastewater treatment plants (WWTPs), but how process conditions and cell physiology affect anammox performance at psychrophilic temperatures below 15 °C remains poorly understood. We tested 14 anammox communities, including 8 from globally-installed PN/A processes, for (i) specific activity at 10-30 °C, (ii) composition of membrane lipids, and (iii) microbial community structure. We observed that membrane composition and cultivation temperature were closely related to the activity of anammox biomasses. The size of ladderane lipids and the content of bacteriohopanoids were key physiological components related to anammox performance at low temperatures. We also indicate that the adaptation of mesophilic cultures to psychrophilic regime necessitates months, but in some cases can take up to 5 years. Interestingly, biomass enriched in the marine genus "Candidatus Scalindua" displayed outstanding potential for nitrogen removal from cold streams. Collectively, our comprehensive study provides essential knowledge of cold adaptation mechanism, will enable more accurate modelling and suggests highly promising target anammox genera for inoculation and set-up of anammox reactors, in particular for mainstream WWTPs.
See more in PubMed
Daigger GT. Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox. Water Environ Res. 2014;86(3):204–209. doi: 10.2175/106143013X13807328849459. PubMed DOI
Jetten MSM, Horn SJ, van Loosdrecht MCM. Towards a more sustainable municipal wastewater treatment system. Water Sci Technol. 1997;35(9):171–180. doi: 10.1016/s0273-1223(97)00195-9. DOI
Wett B, Buchauer K, Fimml C. Energy self-sufficiency as a feasible concept for wastewater treatment systems; Singapore. IWA Leading Edge Technology Conference, IWa; 2007. pp. 21–24.
Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM. Full-scale partial nitritation/anammox experiences - An application survey. Water Res. 2014;55:292–303. doi: 10.1016/j.watres.2014.02.032. PubMed DOI
Bowden G, Stensel HD, Tsuchihashi R. Technologies for Sidestream nitrogen removal. Water Environment Research Foundation. 2015 doi: 10.2166/9781780407890. DOI
Cao Y, Kwok BH, Van Loosdrecht M, Daigger GT, Png HY, Long WY, Chye CS, Ghani YA. The occurrence of enhanced biological phosphorus removal in a 200,000 m3/day partial nitration and anammox activated sludge process at the Changi water reclamation plant, Singapore. Water Sci Technol. 2017;75(3):741–751. doi: 10.2166/wst.2016.565. PubMed DOI
Wan Y, Ruan X, Wang J, Shi X. Spatial and seasonal variations in the abundance of nitrogen-transforming genes and the microbial community structure in freshwater lakes with different trophic statuses. International Journal of Environmental Research and Public Health. 2019;16(13) doi: 10.3390/ijerph16132298. PubMed DOI PMC
Wang W, Liu W, Wu D, Wang X, Zhu G. Differentiation of nitrogen and microbial community in the littoral and limnetic sediments of a large shallow eutrophic lake (Chaohu Lake, China) Journal of Soils and Sediments. 2019;19(2):1005–1016. doi: 10.1007/s11368-018-2090-4. DOI
Zhao J, Xu Y, Peng L, Liu G, Wan X, Hua Y, Zhu D, Hamilton DP. Diversity of anammox bacteria and abundance of functional genes for nitrogen cycling in the rhizosphere of submerged macrophytes in a freshwater lake in summer. Journal of Soils and Sediments. 2019 doi: 10.1007/s11368-019-02340-4. DOI
Hoekstra M, de Weerd FA, Kleerebezem R, van Loosdrecht MCM. Deterioration of the anammox process at decreasing temperatures and long SRTs. Environ Technol. 2018;39(5):658–668. doi: 10.1080/09593330.2017.1309078. PubMed DOI
Cao Y, van Loosdrecht MCM, Daigger GT. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl Microbiol Biotechnol. 2017;101(4):1365–1383. doi: 10.1007/s00253-016-8058-7. PubMed DOI
Seuntjens D, Bundervoet B, Mollen H, De Mulder C, Wypkema E, Verliefde A, Nopens I, Colsen J, Vlaeminck S. Energy efficient treatment of A-stage effluent: pilot-scale experiences with shortcut nitrogen removal. Water Sci Technol. 2016;73(9):2150–2158. PubMed
Hejnic J, Dolejs P, Kouba V, Prudilova A, Widiayuningrum P, Bartacek J. Anaerobic Treatment of Wastewater In Colder Climates Using UASB Reactor and Anaerobic Membrane Bioreactor. Environ Eng Sci. 2016 doi: 10.1089/ees.2016.0163. DOI
De Cocker P, Bessiere Y, Hernandez-Raquet G, Dubos S, Mozo I, Gaval G, Caligaris M, Barillon B, Vlaeminck SE, Sperandio M. Enrichment and adaptation yield high anammox conversion rates under low temperatures. Bioresource Technol. 2018;250:505–512. doi: 10.1016/j.biortech.2017.11.079. PubMed DOI
Hendrickx TLG, Kampman C, Zeeman G, Temmink H, Hu Z, Kartal B, Buisman CJN. High specific activity for anammox bacteria enriched from activated sludge at 10°C. Bioresource Technol. 2014;163:214–222. doi: 10.1016/j.biortech.2014.04.025. PubMed DOI
Kouba V, Darmal R, Vejmelkova D, Jenicek P, Bartacek J. Cold shocks of anammox biofilm stimulate nitrogen removal at low temperatures. Biotechnol Prog. 2018;34(1) doi: 10.1002/btpr.2570. PubMed DOI
Lotti T, Kleerebezem R, van Loosdrecht MCM. Effect of temperature change on anammox activity. Biotechnol Bioeng. 2014;112(1):98–103. doi: 10.1002/bit.25333. PubMed DOI
Zhou T, Yu DS, Li J, Wu GD, Wang XJ. Effect of Temperature on Nitrogen Removal Performance of Marine Anaerobic Ammonium Oxidizing. Bacteria Huanjing Kexue/Environmental Science. 2017;38(5):2044–2051. doi: 10.13227/j.hjkx.201610055. PubMed DOI
Lin X, Wang Y, Ma X, Yan Y, Wu M, Bond PL, Guo J. Evidence of differential adaptation to decreased temperature by anammox bacteria. Environmental Microbiology. 2018;20(10):3514–3528. doi: 10.1111/1462-2920.14306. PubMed DOI
Akaboci TRV, Gich F, Ruscalleda M, Balaguer MD, Colprim J. Assessment of operational conditions towards mainstream partial nitritation-anammox stability at moderate to low temperature: Reactor performance and bacterial community. Chem Eng J. 2018;350:192–200. doi: 10.1016/j.cej.2018.05.115. DOI
He S, Chen Y, Qin M, Mao Z, Yuan L, Niu Q, Tan X. Effects of temperature on anammox performance and community structure. Bioresource Technol. 2018;260:186–195. doi: 10.1016/j.biortech.2018.03.090. PubMed DOI
Li Q, Wang S, Zhang P, Yu J, Qiu C, Zheng J. Influence of temperature on an Anammox sequencing batch reactor (SBR) system under lower nitrogen load. Bioresource Technol. 2018;269:50–56. doi: 10.1016/j.biortech.2018.08.057. PubMed DOI
Wang W, Yan Y, Song C, Pan M, Wang Y. The microbial community structure change of an anaerobic ammonia oxidation reactor in response to decreasing temperatures. Environ Sci Pollut Res Int. 2018;25(35):35330–35341. doi: 10.1007/s11356-018-3449-1. PubMed DOI
Zhang M, Qiao S, Shao D, Jin R, Zhou J. Simultaneous nitrogen and phosphorus removal by combined anammox and denitrifying phosphorus removal process. J Chem Technol Biotechnol. 2018;93(1):94–104. doi: 10.1002/jctb.5326. DOI
Zhang B, Zhao J, Zuo J, Shi X, Gong J, Ren H. Realizing stable operation of anaerobic ammonia oxidation at low temperatures treating low strength synthetic wastewater. J Environ Sci (China) 2018 doi: 10.1016/j.jes.2018.03.020. PubMed DOI
Kouba V, Bachmannova C, Podzimek T, Lipovova P, van Loosdrecht MC. Physiology of anammox adaptation to low temperatures and promising biomarkers: a review. Bioresour Technol. 2022;830 doi: 10.1016/j.biortech.2022.126847. PubMed DOI
Moss FR, Shuken SR, Mercer JAM, Cohen CM, Weiss TM, Boxer SG, Burns NZ. Ladderane phospholipids form a densely packed membrane with normal hydrazine and anomalously low proton/hydroxide permeability. Proceedings of the National Academy of Sciences. 2018;115(37):9098–9103. doi: 10.1073/pnas.1810706115. PubMed DOI PMC
Sinninghe Damsté JS, Strous M, Rijpstra WIC, Hopmans EC, Geenevasen JAJ, Van Duin ACT, Van Niftrik LA, Jetten MSM. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature. 2002;419(6908):708–712. doi: 10.1038/nature01128. PubMed DOI
Beales N. Adaptation of Microorganisms to Cold Temperatures, Weak Acid Preservatives, Low pH and Osmotic Stress: A Review. Compr Rev Food Sci Food Saf. 2004;3(1):1–20. doi: 10.1111/j.1541-4337.2004.tb00057.x. PubMed DOI
Rattray JE, Van Vossenberg JD, Jaeschke A, Hopmans EC, Wakeham SG, Lavik G, Kuypers MMM, Strous M, Jetten MSM, Schouten S, Sinninghe Damsté JS. Impact of temperature on ladderane lipid distribution in anammox bacteria. Appl Environ Microbiol. 2010;76(5):1596–1603. doi: 10.1128/aem.01796-09. PubMed DOI PMC
Kouba V, Vejmelkova D, Zwolsman E, Hurkova K, Navratilova K, Laureni M, Vodickova P, Podzimek T, Hajslova J, Pabst M. Adaptation of anammox bacteria to low temperature via gradual acclimation and cold shocks: Distinctions in protein expression, membrane composition and activities. Water Res. 2022;209:117822. doi: 10.1016/j.watres.2021.117822. PubMed DOI
APHA. Standard Methods for the Examination of Water & Wastewater. 21 ed. Washington, D.C: Amer Public Health Assn; 2005.
Strous M, Heijnen JJ, Kuenen JG, Jetten MSM. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biot. 1998;50(5):589–596. doi: 10.1007/s002530051340. DOI
Rattray JE, Van De Vossenberg J, Hopmans EC, Kartal B, Van Niftrik L, Rijpstra WIC, Strous M, Jetten MSM, Schouten S, Damste JSS. Ladderane lipid distribution in four genera of anammox bacteria. Arch Microbiol. 2008;190(1):51–66. doi: 10.1007/s00203-008-0364-8. PubMed DOI
Rysgaard RN, Risgaard-Petersen GN, Dalsgaard T. Denitrification and anammox activity in Arctic marine sediments. Limnol Oceanogr. 2004;49(5):1493–1502. doi: 10.4319/lo.2004.49.5.1493. DOI
Ma H, Zhang Y, Xue Y, Kubota K, Li YY. Efficient phosphorus recovery by enhanced hydroxyapatite formation in a high loading anammox expanded bed reactor at 15 °C. Chem Eng J. 2021;425:130636. doi: 10.1016/j.cej.2021.130636. DOI
Dalsgaard T, Thamdrup B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl Environ Microbiol. 2002;68(8):3802–3808. doi: 10.1128/AEM.68.8.3802-3808.2002. PubMed DOI PMC
Dosta J, Fernandez I, Vazquez-Padfn JR, Mosquera-Corral A, Campos JL, Mata-Alvarez J, Mendez R. Short- and long-term effects of temperature on the Anammox process. J Hazard Mater. 2008;154(1–3):688–693. doi: 10.1016/j.jhazmat.2007.10.082. PubMed DOI
Puyol D, Carvajal-Arroyo JM, Garcia B, Sierra-Alvarez R, Field JA. Kinetics and thermodynamics of anaerobic ammonium oxidation process using Brocadia spp. dominated mixed cultures. Water Science and Technology. 2014;69(8):1682–1688. doi: 10.2166/wst.2014.074. PubMed DOI
Hendrickx TLG, Wang Y, Kampman C, Zeeman G, Temmink H, Buisman CJN. Autotrophic nitrogen removal from low strength waste water at low temperature. Water Res. 2012;46(7):2187–2193. doi: 10.1016/j.watres.2012.01.037. PubMed DOI
Park G, Takekawa M, Soda S, Ike M, Furukawa K. Temperature dependence of nitrogen removal activity by anammox bacteria enriched at low temperatures. Journal of Bioscience and Bioengineering. 2017;123(4):505–511. doi: 10.1016/j.jbiosc.2016.11.009. PubMed DOI
Song Y, Lin L, Ni J, Ma H, Qi W-K, Li Y-Y. Architecture of HAP-anammox granules contributed to high capacity and robustness of nitrogen removal under 7°C. Water Res. 2021;206:117764. doi: 10.1016/j.watres.2021.117764. PubMed DOI
Isaka K, Date Y, Kimura Y, Sumino T, Tsuneda S. Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures. FEMS Microbiol Lett. 2008;282(1):32–38. doi: 10.1111/j.1574-6968.2008.01095.x. PubMed DOI
Wang X, Yang H, Su Y, Liu X. Effect of the form of granular sludge and temperature on anammox immobilized fillers: From performance to microbial community analysis. Sci Total Environ. 2022;803:149754. doi: 10.1016/j.scitotenv.2021.149754. PubMed DOI
Wang G, Zhang D, Xu Y, Hua Y, Dai X. Comparing two start up strategies and the effect of temperature fluctuations on the performance of mainstream anammox reactors. Chemosphere. 2018;209:632–639. doi: 10.1016/j.chemosphere.2018.06.134. PubMed DOI
Kwak W, Rout PR, Lee E, Bae J. Influence of hydraulic retention time and temperature on the performance of an anaerobic ammonium oxidation fluidized bed membrane bioreactor for low-strength ammonia wastewater treatment. Chem Eng J. 2020;386:123992. doi: 10.1016/j.cej.2019.123992. DOI
Strous M, Kuenen JG, Jetten MSM. Key physiological parameters of anaerobic ammonium oxidation. Appl Microbiol Biot. 1999;65(7):3248–3250. doi: 10.1128/aem.65.7.3248-3250.1999. PubMed DOI PMC
Zhang B, Zhao J, Zuo J, Shi X, Gong J, Ren H. Realizing stable operation of anaerobic ammonia oxidation at low temperatures treating low strength synthetic wastewater. J Environ Sci (China) 2019;75:193–200. doi: 10.1016/j.jes.2018.03.020. PubMed DOI
Sobotka D, Czerwionka K, Makinia J. Influence of temperature on the activity of anammox granular biomass. Water Sci Technol. 2016;73(10):2518–2525. doi: 10.2166/wst.2016.103. PubMed DOI
Kouba V, Hurkova K, Navratilova K, Vejmelkova D, Benakova A, Laureni M, Vodickova P, Podzimek T, Lipovova P, van Niftrik L, Hajslova J, et al. Effect of temperature on the compositions of ladderane lipids in globally surveyed anammox populations. Sci Total Environ. 2022;830 doi: 10.1016/j.scitotenv.2022.154715. PubMed DOI PMC
Wiesmann U. Biological nitrogen removal from wastewater. Adv Biochem Eng Biotechnol. 1994;51:113–54. doi: 10.1007/BFb0008736. PubMed DOI
Zheng Y, Hou L, Liu M, Yin G. Dynamics and environmental importance of anaerobic ammonium oxidation (anammox) bacteria in urban river networks. Environmental Pollution. 2019;254 doi: 10.1016/j.envpol.2019.112998. PubMed DOI
Cai Y, Zhang X, Li G, Dong J, Yang A, Wang G, Zhou X. Spatiotemporal distributions and environmental drivers of diversity and community structure of nosZ-type denitrifiers and anammox bacteria in sediments of the Bohai Sea and North Yellow Sea China. Journal of Oceanology and Limnology. 2019;37(4):1211–1228. doi: 10.1007/s00343-019-8200-3. DOI
Siliakus MF, van der Oost J, Kengen SWM. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles. 2017;21(4):651–670. doi: 10.1007/s00792-017-0939-x. PubMed DOI PMC
Boumann HA, Stroeve P, Longo ML, Poolman B, Kuiper JM, Hopmans EC, Jetten MS, Damste JSS, Schouten S. Biophysical properties of membrane lipids of anammox bacteria: II. Impact of temperature and bacteriohopanoids. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2009;1788(7):1452–1457. doi: 10.1016/j.bbamem.2009.04.005. PubMed DOI
Jebbar M, Franzetti B, Girard E, Oger P. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles. 2015;19(4):721–740. doi: 10.1007/s00792-015-0760-3. PubMed DOI
Paltauf F. Ether lipids in biomembranes. Chem Phys Lipids. 1994;74(2):101–139. doi: 10.1016/0009-3084(94)90054-X. PubMed DOI
Rush D, Sinninghe Damsté JS, Poulton SW, Thamdrup B, Garside AL, Acuna González J, Schouten S, Jetten MSM, Talbot HM. Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments. Geochim Cosmochim Acta. 2014;140:50–64. doi: 10.1016/j.gca.2014.05.014. DOI
Yin S, Li J, Dong H, Qiang Z. Unraveling the nitrogen removal properties and microbial characterization of “Candidatus Scalindua"-dominated consortia treating seawater-based wastewater. Sci Total Environ. 2021;786:147470. doi: 10.1016/j.scitotenv.2021.147470. PubMed DOI
Pang J, Li J, Chen R, Lu H. Synergistic biological removal of nitrogen and sulfide from saline mariculture wastewater by halophilic consortia. Chem Eng J. 2021;423:130280. doi: 10.1016/j.cej.2021.130280. DOI
Yokota N, Mineshima R, Watanabe Y, Tokutomi T, Kiyokawa T, Nishiyama T, Fujii T, Furukawa K. Startup of pilot-scale single-stage nitrogen removal using anammox and partial nitritation (SNAP) reactor for waste brine treatment using marine anammox bacteria. J Biosci Bioeng. 2021;132(5):505–512. doi: 10.1016/j.jbiosc.2021.06.013. PubMed DOI
Hu Z, Lotti T, de Kreuk M, Kleerebezem R, van Loosdrecht M, Kruitd J, Jetten MSM, Kartala B. Nitrogen Removal by a Nitritation-Anammox Bioreactor at Low Temperature. Appl Environ Microbiol. 2013;79(8):2807–2812. doi: 10.1128/aem.03987-12. PubMed DOI PMC
Wu D, Ekama GA, Chui H-K, Wang B, Cui Y-X, Hao T-W, van Loosdrecht MCM, Chen GH. Large-scale demonstration of the sulfate reduction autotrophic denitrification nitrification integrated (SANI®) process in saline sewage treatment. Water Res. 2016;100:496–507. doi: 10.1016/j.watres.2016.05.052. PubMed DOI
Le T, Peng B, Su C, Massoudieh A, Torrents A, Al-Omari A, Murthy S, Wett B, Chandran K, deBarbadillo C, Bott C, et al. Nitrate residual as a key parameter to efficiently control partial denitrification coupling with anammox. Water Environ Res. 2019;91(11):1455–1465. doi: 10.1002/wer.1140. PubMed DOI