Preparation and Characterization of Glass-Ceramic Foam from Clay-Rich Waste Diatomaceous Earth
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FAST/FCH-J-21-7280
Brno University of Technology
PubMed
35207924
PubMed Central
PMC8878804
DOI
10.3390/ma15041384
PII: ma15041384
Knihovny.cz E-resources
- Keywords
- foam glass-ceramics, nepheline, porous materials, secondary materials, waste diatomaceous earth,
- Publication type
- Journal Article MeSH
In this study, the potential use of waste diatomaceous earth from the production of diatomaceous earth for filtration purposes, as an alternative raw material for foam glass production, was explored. The chemical and mineralogical composition and the high temperature behavior of waste diatomite were studied to assess its suitability for foam glass production. Glass-ceramic foams were prepared using NaOH solution as a foaming agent, via a hydrate mechanism. The influence of different pretreatments and firing temperatures on the foam's structure, bulk density and compressive strength was investigated. High temperature behavior was studied using TG/DTA analysis and high temperature microscopy. Phase composition was studied using X-ray diffraction analysis. Glass-ceramic foam samples of a high porosity comparable to conventional foam glass products were fabricated. The pretreatment temperature, foaming temperature and sintering holding time were found to have a significant influence on foam properties. With increased pretreatment temperature, pyrogenic carbon from the thermal decomposition of organic matter contained in the raw material acted as an additional foaming agent and remained partially unoxidized in prepared foams. The bulk densities of prepared samples ranged from 150 kg/m3 to 510 kg/m3 and their compressive strengths were between 140 and 1270 kPa.
See more in PubMed
Scarinci G., Brusatin G., Bernado E. Glass Foam. In: Scheffler M., Colombo P., editors. Cellular Ceramics: Structure, Manufacturing, Properties and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2005. pp. 158–176.
Karandashova N.S., Goltsman B.M., Yatsenko E.A. Analysis of Influence of Foaming Mixture Components on Structure and Properties of Foam Glass. IOP Conf. Ser. Mater. Sci. Eng. 2017;262:012020. doi: 10.1088/1757-899X/262/1/012020. DOI
Siddika A., Hajimohammadi A., Sahajwalla V. Powder sintering and gel casting methods in making glass foam using waste glass: A review on parameters, performance, and challenges. Ceram. Int. 2022;48:1494–1511. doi: 10.1016/j.ceramint.2021.10.066. DOI
Khamidulina D.D., Nekrasova S.A., Voronin K.M. Foam Glass Production from Waste Glass by Compression. IOP Conf. Ser. Mater. Sci. Eng. 2017;262:012008. doi: 10.1088/1757-899X/262/1/012008. DOI
Manevich V.E., Subbotin K.Y. Foam glass and problems of energy conservation. Glass Ceram. 2008;65:105–108. doi: 10.1007/s10717-008-9026-1. DOI
Foam Glass Market by Type (Open Cell and Closed Cell), Process (Physical and Chemical), Application (Building & Industrial Insulation and Chemical Processing Systems), End-Use Industry (Building & Construction and Industrial)—Global Forecast to 2024. [(accessed on 11 November 2021)]. Available online: https://www.marketsandmarkets.com/Market-Reports/foam-glass-market-3506071.html.
Yatsenko E.A., Goltsman B.M., Klimova L.V., Yatsenko L.A. Peculiarities of foam glass synthesis from natural silica-containing raw materials. J. Therm. Anal. Calorim. 2020;142:119–127. doi: 10.1007/s10973-020-10015-3. DOI
König J., Petersen R.R., Yue Y. Fabrication of highly insulating foam glass made from CRT panel glass. Ceram. Int. 2015;41:9793–9800. doi: 10.1016/j.ceramint.2015.04.051. DOI
Hao Y., Wu H., Guan J. Synthesis of Foam Glass-Ceramic from CRT Panel Glass using One-step Powder Sintering. IOP Conf. Ser. Earth Environ. Sci. 2018;186:012020. doi: 10.1088/1755-1315/186/2/012020. DOI
Sassi M., Ibrahim J.F.M., Simon A. Characterization of foam glass produced from waste CRT glass and aluminium dross. J. Phys. Conf. Ser. 2020;1527:012037. doi: 10.1088/1742-6596/1527/1/012037. DOI
Bai J., Yang X., Xu S., Jing W., Yang J. Preparation of foam glass from waste glass and fly ash. Mater. Lett. 2014;136:52–54. doi: 10.1016/j.matlet.2014.07.028. DOI
Chen B., Luo Z., Lu A. Preparation of sintered foam glass with high fly ash content. Mater. Lett. 2011;65:3555–3558. doi: 10.1016/j.matlet.2011.07.042. DOI
Fernandes H.R., Tulyaganov D.U., Ferreira J.M.F. Production and characterisation of glass ceramic foams from recycled raw materials. Adv. Appl. Ceram. 2013;108:9–13. doi: 10.1179/174367509X344971. DOI
Ye Z.N., Wang Y.W., Jiang H., Li N., Liu S.Q. Production and characterisation of glass ceramic foams from recycled raw materials. Key Eng. Mater. 2013;575–576:461–464. doi: 10.4028/www.scientific.net/KEM.575-576.461. DOI
Liu T., Li X., Guan L., Liu P., Wu T., Li Z., Lu A. Low-cost and environment-friendly ceramic foams made from lead–zinc mine tailings and red mud: Foaming mechanism, physical, mechanical and chemical properties. Ceram. Int. 2016;42:1733–1739. doi: 10.1016/j.ceramint.2015.09.131. DOI
Kurtulus C., Kurtulus R., Kavas T. Foam glass derived from ferrochrome slag and waste container glass: Synthesis and extensive characterizations. Ceram. Int. 2021;47:24997–25008. doi: 10.1016/j.ceramint.2021.05.228. DOI
Yan Z., Feng K., Tian J., Liu Y. Effect of high titanium blast furnace slag on preparing foam glass–ceramics for sound absorption. J. Porous Mater. 2019;26:1209–1215. doi: 10.1007/s10934-019-00722-0. DOI
Kazantseva L.K., Yusupov T.S., Lygina T.Z., Shumskaya L.G., Tsyplakov D.S. Foam Glass from Mechanoactivated Zeolite-Poor Rock. Glass Ceram. 2014;70:360–364. doi: 10.1007/s10717-014-9580-7. DOI
Vereshagin V.I., Sokolova S.N., Lygina T.Z., Shumskaya L.G., Tsyplakov D.S. Granulated foam glass–ceramic material from zeolitic rocks. Constr. Build. Mater. 2008;22:999–1003. doi: 10.1016/j.conbuildmat.2007.01.016. DOI
Yatsenko E.A., Goltsman B.M., Ryabova A.V. Complex Protection of Pipelines Using Silicate Materials Based on Local Raw Materials of the Far East. Mater. Sci. Forum. 2019;945:46–52. doi: 10.4028/www.scientific.net/MSF.945.46. DOI
Ivanov K.S., Goltsman B.M., Ryabova A.V. Preparation and Properties of Foam Glass-ceramic from Diatomite. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2018;33:273–277. doi: 10.1007/s11595-018-1817-8. DOI
Petersen R.R., König J., Yue Y. The mechanism of foaming and thermal conductivity of glasses foamed with MnO2. J. Non-Cryst. Solids. 2015;425:74–82. doi: 10.1016/j.jnoncrysol.2015.05.030. DOI
Davraz M., Koru M., Akdağ A.E., Kılınçarslan Ş., Delikanlı Y.E., Çabuk M. An investigation of foaming additives and usage rates in the production of ultra-light foam glass. J. Therm. Anal. Calorim. 2015;425:74–82. doi: 10.1007/s10973-021-10781-8. DOI
Shi H., Feng K., Wang H., Chen C., Zhou H., Çabuk M. Influence of aluminium nitride as a foaming agent on the preparation of foam glass-ceramics from high-titanium blast furnace slag. Int. J. Miner. Metall. Mater. 2016;23:595–600. doi: 10.1007/s12613-016-1271-7. DOI
Yot P.G., Méar F.O. Lead extraction from waste funnel cathode-ray tubes glasses by reaction with silicon carbide and titanium nitride. J. Hazard. Mater. 2009;172:117–123. doi: 10.1016/j.jhazmat.2009.06.137. PubMed DOI
da Silva R.C., Kubaski E.T., Tenório-Neto E.T., Lima-Tenório M.K., Tebcherani S.M. Foam glass using sodium hydroxide as foaming agent: Study on the reaction mechanism in soda-lime glass matrix. J. Non-Cryst. Solids. 2019;511:177–182. doi: 10.1016/j.jnoncrysol.2019.02.003. DOI
Éidukyavichus K.K., Matseikene V.R., Balkyavichus V.V., Shpokauskas A.A., Laukaitis A.A., Kunskaite L.Y. Use of Cullet of Different Chemical Compositions in Foam Glass Production: Study on the reaction mechanism in soda-lime glass matrix. Glass Ceram. 2004;61:77–80. doi: 10.1023/B:GLAC.0000034051.32100.24. DOI
Reka A.A., Pavlovski B., Fazlija E., Berisha A., Pacarizi M., Daghmehchi M., Sacalis C., Jovanovski G., Makreski P., Oral A. Diatomaceous Earth: Characterization, thermal modification, and application. Open Chem. 2021;19:451–461. doi: 10.1515/chem-2020-0049. DOI
Ptáček P., Frajkorová F., Šoukal F., Opravil T. Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite. Powder Technol. 2014;264:439–445. doi: 10.1016/j.powtec.2014.05.047. DOI
Mos Y.M., Vermeulen A.C., Buisman C.J.N., Weijma J. X-ray Diffraction of Iron Containing Samples: The Importance of a Suitable Configuration. Geomicrobiol. J. 2018;35:511–517. doi: 10.1080/01490451.2017.1401183. DOI
Ivanov K.S., Radaev S.S., Selezneva O.I., Yatsenko L.A. Diatomites in Granular Foam-Glass Technology. Glass Ceram. 2014;71:119–127. doi: 10.1007/s10717-014-9641-y. DOI