Immune Response after Skin Delivery of a Recombinant Heat-Labile Enterotoxin B Subunit of Enterotoxigenic Escherichia coli in Mice
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PI19/00146
Instituto de Salud Carlos III
PubMed
35213971
PubMed Central
PMC8875158
DOI
10.3390/pharmaceutics14020239
PII: pharmaceutics14020239
Knihovny.cz E-zdroje
- Klíčová slova
- LTB subunit, dissolving microneedles, enterotoxigenic Escherichia coli (ETEC), intradermal vaccine,
- Publikační typ
- časopisecké články MeSH
Enterotoxigenic Escherichia coli (ETEC) infections have been identified as a major cause of acute diarrhoea in children in developing countries, associated with substantial morbidity and mortality rates. Additionally, ETEC remains the most common cause of acute diarrhea of international travellers to endemic areas. The heat-labile toxin (LT) is a major virulence factor of ETEC, with a significant correlation between the presence of antibodies against LT and protection in infected patients. In the present work, we constructed a recombinant LTB unit (rLTB) and studied the capacity of this toxoid incorporated in microneedles (rLTB-MN) to induce a specific immune response in mice. MN were prepared from aqueous blends of the polymer Gantrez AN® [poly (methyl vinyl ether-co-maleic anhydride)], which is not cytotoxic and has been shown to possess immunoadjuvant properties. The mechanical and dissolution properties of rLTB-MNs were evaluated in an in vitro Parafilm M® model and in mice and pig skin ex vivo models. The needle insertion ranged between 378 µm and 504 µm in Parafilm layers, and MNs fully dissolved within 15 min of application inside porcine skin. Moreover, female and male BALB/c mice were immunized through ear skin with one single dose of 5 μg·rLTB in MNs, eliciting significant fecal anti-LT IgA antibodies, higher in female than in male mice. Moreover, we observed an enhanced production of IL-17A by spleen cells in the immunized female mice, indicating a mucosal non-inflammatory and neutralizing mediated response. Further experiments will now be required to validate the protective capacity of this new rLTB-MN formulation against this deadly non-vaccine-preventable disease.
Zobrazit více v PubMed
Anderson J.D., Bagamian K.H., Muhib F., Baral R., Laytner L.A., Amaya M., Wierzba T., Rheingans R. Potential impact and cost-effectiveness of future ETEC and Shigella vaccines in 79 low- and lower middle-income countries. Vaccine X. 2019;2:100024. doi: 10.1016/j.jvacx.2019.100024. PubMed DOI PMC
Olson S., Hall A., Riddle M.S., Porter C.K. Travelers’ diarrhea: Update on the incidence, etiology and risk in military and similar populations—1990–2005 versus 2005–2015, does a decade make a difference? Trop. Dis. Travel Med. Vaccines. 2019;5:1–15. doi: 10.1186/s40794-018-0077-1. PubMed DOI PMC
Khalil I., Walker R., Porter C.K., Muhib F., Chilengi R., Cravioto A., Guerrant R., Svennerholm A.-M., Qadri F., Baqar S., et al. Enterotoxigenic Escherichia coli (ETEC) vaccines: Priority activities to enable product development, licensure, and global access. Vaccine. 2021;39:4266–4277. doi: 10.1016/j.vaccine.2021.04.018. PubMed DOI PMC
Isidean S.D., Riddle M.S., Savarino S.J., Porter C.K. A systematic review of ETEC epidemiology focusing on colonization factor and toxin expression. Vaccine. 2011;29:6167–6178. doi: 10.1016/j.vaccine.2011.06.084. PubMed DOI
Duan Q., Xia P., Nandre R., Zhang W., Zhu G. Review of Newly Identified Functions Associated with the Heat-Labile Toxin of Enterotoxigenic Escherichia coli. Front. Cell. Infect. Microbiol. 2019;9:292. doi: 10.3389/fcimb.2019.00292. PubMed DOI PMC
Lu X., Li C., Li C., Li P., Fu E., Xie Y., Jin F. Heat-labile enterotoxin-induced PERK-CHOP pathway activation causes intestinal epithelial cell apoptosis. Front. Cell. Infect. Microbiol. 2017;7:244. doi: 10.3389/fcimb.2017.00244. PubMed DOI PMC
Chakraborty S., Harro C., DeNearing B., Ram M., Feller A., Cage A., Bauers N., Bourgeois A.L., Walker R., Sack D.A. Characterization of mucosal immune responses to enterotoxigenic Escherichia coli vaccine antigens in a human challenge model: Response profiles after primary infection and homologous rechallenge with strain H10407. Clin. Vaccine Immunol. 2015;23:55–64. doi: 10.1128/CVI.00617-15. PubMed DOI PMC
Wang H., Zhong Z., Luo Y., Cox E., Devriendt B. Heat-stable enterotoxins of enterotoxigenic Escherichia coli and their impact on host immunity. Toxins. 2019;11:24. doi: 10.3390/toxins11010024. PubMed DOI PMC
Frech S.A., DuPont H.L., Bourgeois A.L., McKenzie R., Belkind-Gerson J., Figueroa J.F., Okhuysen P.C., Guerrero N.H., Martinez-Sandoval F.G., Meléndez-Romero J.H. Use of a patch containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: A phase II, randomised, double-blind, placebo-controlled field trial. Lancet. 2008;371:2019–2025. doi: 10.1016/S0140-6736(08)60839-9. PubMed DOI
Diaz Y., Govasli M.L., Zegeye E.D., Sommerfelt H., Steinsland H., Puntervoll P. Immunizations with enterotoxigenic Escherichia coli heat-stable toxin conjugates engender toxin-neutralizing antibodies in mice that also cross-react with guanylin and uroguanylin. Infect. Immun. 2019;87:e00099-19. doi: 10.1128/IAI.00099-19. PubMed DOI PMC
Romani N., Flacher V., Tripp C.H., Sparber F., Ebner S., Stoitzner P. Targeting Skin Dendritic Cells to Improve Intradermal Vaccination. Curr. Top. Microbiol. Immunol. 2011;351:113–138. doi: 10.1007/82_2010_118. PubMed DOI PMC
Pastor Y., Larrañeta E., Erhard Á., Quincoces G., Peñuelas I., Irache J.M., Donnelly R., Gamazo C. Dissolving microneedles for intradermal vaccination against shigellosis. Vaccines. 2019;7:159. doi: 10.3390/vaccines7040159. PubMed DOI PMC
Huarte J., Espuelas S., Martínez-Oharriz C., Irache J.M. Nanoparticles from Gantrez-based conjugates for the oral delivery of camptothecin. Int. J. Pharm. X. 2021;3:100104. doi: 10.1016/j.ijpx.2021.100104. PubMed DOI PMC
Larrañeta E., Moore J., Vicente-Pérez E.M., González-Vázquez P., Lutton R., Woolfson A.D., Donnelly R.F. A proposed model membrane and test method for microneedle insertion studies. Int. J. Pharm. 2014;472:65–73. doi: 10.1016/j.ijpharm.2014.05.042. PubMed DOI PMC
Meyer W. Bemerkungen zur Eignung der Schweinehaut als biologisches Modell für die Haut des Menschen. Der Hautarzt. 1996;47:178–182. doi: 10.1007/s001050050399. PubMed DOI
Manconi M., Manca M.L., Caddeo C., Valenti D., Cencetti C., Diez-Sales O., Nacher A., Mir-Palomo S., Terencio M.C., Demurtas D., et al. Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin. Nanomed. Nanotechnol. Biol. Med. 2018;14:569–579. doi: 10.1016/j.nano.2017.12.001. PubMed DOI
Donnelly R.F., Moffatt K., Alkilani A.Z., Vicente-Pérez E.M., Barry J., McCrudden M.T., Woolfson A.D. Hydrogel-Forming Microneedle Arrays Can Be Effectively Inserted in Skin by Self-Application: A Pilot Study Centred on Pharmacist Intervention and a Patient Information Leaflet. Pharm. Res. 2014;31:1989–1999. doi: 10.1007/s11095-014-1301-y. PubMed DOI
Mani S., Toapanta F.R., McArthur M.A., Qadri F., Svennerholm A.-M., Devriendt B., Phalipon A., Cohen D., Sztein M.B. Role of antigen specific T and B cells in systemic and mucosal immune responses in ETEC and Shigella infections, and their potential to serve as correlates of protection in vaccine development. Vaccine. 2019;37:4787–4793. doi: 10.1016/j.vaccine.2019.03.040. PubMed DOI PMC
Alam M.M., Aktar A., Afrin S., Rahman M.A., Aktar S., Uddin T., Rahman M.A., Mahbuba D.A., Chowdhury F., Khan A.I. Antigen-specific memory B-cell responses to enterotoxigenic Escherichia coli infection in Bangladeshi adults. PLoS Negl. Trop. Dis. 2014;8:e2822. doi: 10.1371/journal.pntd.0002822. PubMed DOI PMC
Lundgren A., Jertborn M., Svennerholm A.-M. Induction of long term mucosal immunological memory in humans by an oral inactivated multivalent enterotoxigenic Escherichia coli vaccine. Vaccine. 2016;34:3132–3140. doi: 10.1016/j.vaccine.2016.04.055. PubMed DOI
Cárdeno A., Magnusson M.K., Quiding-Järbrink M., Lundgren A. Activated T follicular helper-like cells are released into blood after oral vaccination and correlate with vaccine specific mucosal B-cell memory. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-018-20740-3. PubMed DOI PMC
Virdi V., Palaci J., Laukens B., Ryckaert S., Cox E., Vanderbeke E., Depicker A., Callewaert N. Yeast-secreted, dried and food-admixed monomeric IgA prevents gastrointestinal infection in a piglet model. Nat. Biotechnol. 2019;37:527–530. doi: 10.1038/s41587-019-0070-x. PubMed DOI PMC
Amcheslavsky A., Wallace A.L., Ejemel M., Li Q., McMahon C.T., Stoppato M., Giuntini S., Schiller Z.A., Pondish J.R., Toomey J.R., et al. Anti-CfaE nanobodies provide broad cross-protection against major pathogenic enterotoxigenic Escherichia coli strains, with implications for vaccine design. Sci. Rep. 2021;11:2751. doi: 10.1038/s41598-021-81895-0. PubMed DOI PMC
Korkmaz E., Balmert S.C., Carey C.D., Erdos G., Falo L.D. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin. Drug. Deliv. 2021;18:151–167. doi: 10.1080/17425247.2021.1823964. PubMed DOI PMC
Kim Y.-C., Prausnitz M.R. Enabling skin vaccination using new delivery technologies. Drug Deliv. Transl. 2011;1:7–12. doi: 10.1007/s13346-010-0005-z. PubMed DOI PMC
Camacho A.I., Martins R.d., Tamayo I., de Souza J., Lasarte J.J., Mansilla C., Esparza I., Irache J.M., Gamazo C. Poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as innate immune system activators. Vaccine. 2011;29:7130–7135. doi: 10.1016/j.vaccine.2011.05.072. PubMed DOI
Tamayo I., Irache J.M., Mansilla C., Ochoa-Repáraz J., Lasarte J.J., Gamazo C. Poly(anhydride) nanoparticles act as active Th1 adjuvants through Toll-like receptor exploitation. Clin. Vaccine Immunol. 2010;17:1356–1362. doi: 10.1128/CVI.00164-10. PubMed DOI PMC
Hutton A.R.J., Quinn H.L., McCague P.J., Jarrahian C., Rein-Weston A., Coffey P.S., Gerth-Guyette E., Zehrung D., Larrañeta E., Donnelly R.F. Transdermal delivery of vitamin K using dissolving microneedles for the prevention of vitamin K deficiency bleeding. Int. J. Pharm. 2018;541:56–63. doi: 10.1016/j.ijpharm.2018.02.031. PubMed DOI PMC
An J.H., Lee H.J., Yoon M.S., Kim D.H. Anti-Wrinkle Efficacy of Cross-Linked Hyaluronic Acid-Based Microneedle Patch with Acetyl Hexapeptide-8 and Epidermal Growth Factor on Korean Skin. Ann. Dermatol. 2019;31:263. doi: 10.5021/ad.2019.31.3.263. PubMed DOI PMC
Klein S.L., Flanagan K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016;16:626–638. doi: 10.1038/nri.2016.90. PubMed DOI
Elderman M., van Beek A., Brandsma E., de Haan B., Savelkoul H., de Vos P., Faas M. Sex impacts Th1 cells, Tregs, and DCs in both intestinal and systemic immunity in a mouse strain and location-dependent manner. Biol. Sex Differ. 2016;7:21. doi: 10.1186/s13293-016-0075-9. PubMed DOI PMC
Liang Y., Kahlenberg J.M., Gudjonsson J.E. A vestigial pathway for sex differences in immune regulation. Cell. Mol. Immunol. 2017;14:578–580. doi: 10.1038/cmi.2017.28. PubMed DOI PMC
Liang Y., Tsoi L.C., Xing X., Beamer M.A., Swindell W.R., Sarkar M.K., Berthier C.C., Stuart P.E., Harms P.W., Nair R.P., et al. A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nat. Immunol. 2017;18:152–160. doi: 10.1038/ni.3643. PubMed DOI PMC
Koyama Y.-I., Nagao S., Ohashi K., Takahashi H., Marunouchi T. Sex Differences in the Densities of Epidermal Langerhans Cells of the Mouse. J. Investig. Dermatol. 1987;88:541–544. doi: 10.1111/1523-1747.ep12470104. PubMed DOI
Chambers E.S., Vukmanovic-Stejic M. Skin barrier immunity and ageing. Immunology. 2020;160:116–125. doi: 10.1111/imm.13152. PubMed DOI PMC
West H.C., Bennett C.L. Redefining the Role of Langerhans Cells as Immune Regulators within the Skin. Front. Immunol. 2018;8:1941. doi: 10.3389/fimmu.2017.01941. PubMed DOI PMC
Tang N., Lu C.-Y., Sue S.-C., Chen T.-H., Jan J.-T., Huang M.-H., Huang C.-H., Chen C.-C., Chiang B.-L., Huang L.-M., et al. Type IIb Heat Labile Enterotoxin B Subunit as a Mucosal Adjuvant to Enhance Protective Immunity against H5N1 Avian Influenza Viruses. Vaccines. 2020;8:710. doi: 10.3390/vaccines8040710. PubMed DOI PMC
Aliahmadi E., Gramlich R., Grützkau A., Hitzler M., Krüger M., Baumgrass R., Schreiner M., Wittig B., Wanner R., Peiser M. TLR2-activated human langerhans cells promote Th17 polarization via IL-1beta, TGF-beta and IL-23. Eur. J. Immunol. 2009;39:1221–1230. doi: 10.1002/eji.200838742. PubMed DOI
Junttila I.S. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front. Immunol. 2018;9:888. doi: 10.3389/fimmu.2018.00888. PubMed DOI PMC
Marshall A.S., Silva J.R., Bannerman C.A., Gilron I., Ghasemlou N. Skin-Resident γδ T Cells Exhibit Site-Specific Morphology and Activation States. J. Immunol. Res. 2019;2019:9020234. doi: 10.1155/2019/9020234. PubMed DOI PMC
Born W.K., Kemal Aydintug M., O’Brien R.L. Diversity of γδ T-cell antigens. Cell. Mol. Immunol. 2013;10:13–20. doi: 10.1038/cmi.2012.45. PubMed DOI PMC
Frossard C.P., Asigbetse K.E., Burger D., Eigenmann P.A. Gut T cell receptor-γδ(+) intraepithelial lymphocytes are activated selectively by cholera toxin to break oral tolerance in mice. Clin. Exp. Immunol. 2015;180:118–130. doi: 10.1111/cei.12561. PubMed DOI PMC
Rosine N., Miceli-Richard C. Innate Cells: The Alternative Source of IL-17 in Axial and Peripheral Spondyloarthritis? Front. Immunol. 2021;11:3206. doi: 10.3389/fimmu.2020.553742. PubMed DOI PMC
Hirota K., Turner J.E., Villa M., Duarte J.H., Demengeot J., Steinmetz O.M., Stockinger B. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 2013;14:372–379. doi: 10.1038/ni.2552. PubMed DOI PMC
Clements J.D., Norton E.B. The Mucosal Vaccine Adjuvant LT(R192G/L211A) or dmLT. mSphere. 2018;3:e00215–e00218. doi: 10.1128/mSphere.00215-18. PubMed DOI PMC
Brereton C.F., Sutton C.E., Ross P.J., Iwakura Y., Pizza M., Rappuoli R., Lavelle E.C., Mills K.H. Escherichia coli heat-labile enterotoxin promotes protective Th17 responses against infection by driving innate IL-1 and IL-23 production. J. Immunol. 2011;186:5896–5906. doi: 10.4049/jimmunol.1003789. PubMed DOI
Brubaker J., Zhang X., Bourgeois A.L., Harro C., Sack D.A., Chakraborty S. Intestinal and systemic inflammation induced by symptomatic and asymptomatic enterotoxigenic E. coli infection and impact on intestinal colonization and ETEC specific immune responses in an experimental human challenge model. Gut Microbes. 2021;13:1–13. doi: 10.1080/19490976.2021.1891852. PubMed DOI PMC
Hajishengallis G., Tapping R.I., Martin M.H., Nawar H., Lyle E.A., Russell M.W., Connell T.D. Toll-Like Receptor 2 Mediates Cellular Activation by the B Subunits of Type II Heat-Labile Enterotoxins. Infect. Immun. 2005;73:1343–1349. doi: 10.1128/IAI.73.3.1343-1349.2005. PubMed DOI PMC
Lavelle E.C., Ward R.W. Mucosal vaccines—Fortifying the frontiers. Nat. Rev. Immunol. 2021;21:1–15. doi: 10.1038/s41577-021-00583-2. PubMed DOI PMC
Pharmather Press Releases. 2021. [(accessed on 12 January 2022)]. Available online: https://www.pharmather.com/news/pharmather-enters-into-process-development-agreeement-with-lts-lohmann-for-ketamine-microneedle-patch.
World Health Organization WHO Preferred Product Characteristics for Vaccines Against Enterotoxigenic Escherichia coli. 2021. [(accessed on 15 December 2021)]. Available online: https://apps.who.int/iris/bitstream/handle/10665/341507/9789240021839-eng.pdf?sequence=1.