Immune Response after Skin Delivery of a Recombinant Heat-Labile Enterotoxin B Subunit of Enterotoxigenic Escherichia coli in Mice

. 2022 Jan 20 ; 14 (2) : . [epub] 20220120

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35213971

Grantová podpora
PI19/00146 Instituto de Salud Carlos III

Odkazy

PubMed 35213971
PubMed Central PMC8875158
DOI 10.3390/pharmaceutics14020239
PII: pharmaceutics14020239
Knihovny.cz E-zdroje

Enterotoxigenic Escherichia coli (ETEC) infections have been identified as a major cause of acute diarrhoea in children in developing countries, associated with substantial morbidity and mortality rates. Additionally, ETEC remains the most common cause of acute diarrhea of international travellers to endemic areas. The heat-labile toxin (LT) is a major virulence factor of ETEC, with a significant correlation between the presence of antibodies against LT and protection in infected patients. In the present work, we constructed a recombinant LTB unit (rLTB) and studied the capacity of this toxoid incorporated in microneedles (rLTB-MN) to induce a specific immune response in mice. MN were prepared from aqueous blends of the polymer Gantrez AN® [poly (methyl vinyl ether-co-maleic anhydride)], which is not cytotoxic and has been shown to possess immunoadjuvant properties. The mechanical and dissolution properties of rLTB-MNs were evaluated in an in vitro Parafilm M® model and in mice and pig skin ex vivo models. The needle insertion ranged between 378 µm and 504 µm in Parafilm layers, and MNs fully dissolved within 15 min of application inside porcine skin. Moreover, female and male BALB/c mice were immunized through ear skin with one single dose of 5 μg·rLTB in MNs, eliciting significant fecal anti-LT IgA antibodies, higher in female than in male mice. Moreover, we observed an enhanced production of IL-17A by spleen cells in the immunized female mice, indicating a mucosal non-inflammatory and neutralizing mediated response. Further experiments will now be required to validate the protective capacity of this new rLTB-MN formulation against this deadly non-vaccine-preventable disease.

Zobrazit více v PubMed

Anderson J.D., Bagamian K.H., Muhib F., Baral R., Laytner L.A., Amaya M., Wierzba T., Rheingans R. Potential impact and cost-effectiveness of future ETEC and Shigella vaccines in 79 low- and lower middle-income countries. Vaccine X. 2019;2:100024. doi: 10.1016/j.jvacx.2019.100024. PubMed DOI PMC

Olson S., Hall A., Riddle M.S., Porter C.K. Travelers’ diarrhea: Update on the incidence, etiology and risk in military and similar populations—1990–2005 versus 2005–2015, does a decade make a difference? Trop. Dis. Travel Med. Vaccines. 2019;5:1–15. doi: 10.1186/s40794-018-0077-1. PubMed DOI PMC

Khalil I., Walker R., Porter C.K., Muhib F., Chilengi R., Cravioto A., Guerrant R., Svennerholm A.-M., Qadri F., Baqar S., et al. Enterotoxigenic Escherichia coli (ETEC) vaccines: Priority activities to enable product development, licensure, and global access. Vaccine. 2021;39:4266–4277. doi: 10.1016/j.vaccine.2021.04.018. PubMed DOI PMC

Isidean S.D., Riddle M.S., Savarino S.J., Porter C.K. A systematic review of ETEC epidemiology focusing on colonization factor and toxin expression. Vaccine. 2011;29:6167–6178. doi: 10.1016/j.vaccine.2011.06.084. PubMed DOI

Duan Q., Xia P., Nandre R., Zhang W., Zhu G. Review of Newly Identified Functions Associated with the Heat-Labile Toxin of Enterotoxigenic Escherichia coli. Front. Cell. Infect. Microbiol. 2019;9:292. doi: 10.3389/fcimb.2019.00292. PubMed DOI PMC

Lu X., Li C., Li C., Li P., Fu E., Xie Y., Jin F. Heat-labile enterotoxin-induced PERK-CHOP pathway activation causes intestinal epithelial cell apoptosis. Front. Cell. Infect. Microbiol. 2017;7:244. doi: 10.3389/fcimb.2017.00244. PubMed DOI PMC

Chakraborty S., Harro C., DeNearing B., Ram M., Feller A., Cage A., Bauers N., Bourgeois A.L., Walker R., Sack D.A. Characterization of mucosal immune responses to enterotoxigenic Escherichia coli vaccine antigens in a human challenge model: Response profiles after primary infection and homologous rechallenge with strain H10407. Clin. Vaccine Immunol. 2015;23:55–64. doi: 10.1128/CVI.00617-15. PubMed DOI PMC

Wang H., Zhong Z., Luo Y., Cox E., Devriendt B. Heat-stable enterotoxins of enterotoxigenic Escherichia coli and their impact on host immunity. Toxins. 2019;11:24. doi: 10.3390/toxins11010024. PubMed DOI PMC

Frech S.A., DuPont H.L., Bourgeois A.L., McKenzie R., Belkind-Gerson J., Figueroa J.F., Okhuysen P.C., Guerrero N.H., Martinez-Sandoval F.G., Meléndez-Romero J.H. Use of a patch containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: A phase II, randomised, double-blind, placebo-controlled field trial. Lancet. 2008;371:2019–2025. doi: 10.1016/S0140-6736(08)60839-9. PubMed DOI

Diaz Y., Govasli M.L., Zegeye E.D., Sommerfelt H., Steinsland H., Puntervoll P. Immunizations with enterotoxigenic Escherichia coli heat-stable toxin conjugates engender toxin-neutralizing antibodies in mice that also cross-react with guanylin and uroguanylin. Infect. Immun. 2019;87:e00099-19. doi: 10.1128/IAI.00099-19. PubMed DOI PMC

Romani N., Flacher V., Tripp C.H., Sparber F., Ebner S., Stoitzner P. Targeting Skin Dendritic Cells to Improve Intradermal Vaccination. Curr. Top. Microbiol. Immunol. 2011;351:113–138. doi: 10.1007/82_2010_118. PubMed DOI PMC

Pastor Y., Larrañeta E., Erhard Á., Quincoces G., Peñuelas I., Irache J.M., Donnelly R., Gamazo C. Dissolving microneedles for intradermal vaccination against shigellosis. Vaccines. 2019;7:159. doi: 10.3390/vaccines7040159. PubMed DOI PMC

Huarte J., Espuelas S., Martínez-Oharriz C., Irache J.M. Nanoparticles from Gantrez-based conjugates for the oral delivery of camptothecin. Int. J. Pharm. X. 2021;3:100104. doi: 10.1016/j.ijpx.2021.100104. PubMed DOI PMC

Larrañeta E., Moore J., Vicente-Pérez E.M., González-Vázquez P., Lutton R., Woolfson A.D., Donnelly R.F. A proposed model membrane and test method for microneedle insertion studies. Int. J. Pharm. 2014;472:65–73. doi: 10.1016/j.ijpharm.2014.05.042. PubMed DOI PMC

Meyer W. Bemerkungen zur Eignung der Schweinehaut als biologisches Modell für die Haut des Menschen. Der Hautarzt. 1996;47:178–182. doi: 10.1007/s001050050399. PubMed DOI

Manconi M., Manca M.L., Caddeo C., Valenti D., Cencetti C., Diez-Sales O., Nacher A., Mir-Palomo S., Terencio M.C., Demurtas D., et al. Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin. Nanomed. Nanotechnol. Biol. Med. 2018;14:569–579. doi: 10.1016/j.nano.2017.12.001. PubMed DOI

Donnelly R.F., Moffatt K., Alkilani A.Z., Vicente-Pérez E.M., Barry J., McCrudden M.T., Woolfson A.D. Hydrogel-Forming Microneedle Arrays Can Be Effectively Inserted in Skin by Self-Application: A Pilot Study Centred on Pharmacist Intervention and a Patient Information Leaflet. Pharm. Res. 2014;31:1989–1999. doi: 10.1007/s11095-014-1301-y. PubMed DOI

Mani S., Toapanta F.R., McArthur M.A., Qadri F., Svennerholm A.-M., Devriendt B., Phalipon A., Cohen D., Sztein M.B. Role of antigen specific T and B cells in systemic and mucosal immune responses in ETEC and Shigella infections, and their potential to serve as correlates of protection in vaccine development. Vaccine. 2019;37:4787–4793. doi: 10.1016/j.vaccine.2019.03.040. PubMed DOI PMC

Alam M.M., Aktar A., Afrin S., Rahman M.A., Aktar S., Uddin T., Rahman M.A., Mahbuba D.A., Chowdhury F., Khan A.I. Antigen-specific memory B-cell responses to enterotoxigenic Escherichia coli infection in Bangladeshi adults. PLoS Negl. Trop. Dis. 2014;8:e2822. doi: 10.1371/journal.pntd.0002822. PubMed DOI PMC

Lundgren A., Jertborn M., Svennerholm A.-M. Induction of long term mucosal immunological memory in humans by an oral inactivated multivalent enterotoxigenic Escherichia coli vaccine. Vaccine. 2016;34:3132–3140. doi: 10.1016/j.vaccine.2016.04.055. PubMed DOI

Cárdeno A., Magnusson M.K., Quiding-Järbrink M., Lundgren A. Activated T follicular helper-like cells are released into blood after oral vaccination and correlate with vaccine specific mucosal B-cell memory. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-018-20740-3. PubMed DOI PMC

Virdi V., Palaci J., Laukens B., Ryckaert S., Cox E., Vanderbeke E., Depicker A., Callewaert N. Yeast-secreted, dried and food-admixed monomeric IgA prevents gastrointestinal infection in a piglet model. Nat. Biotechnol. 2019;37:527–530. doi: 10.1038/s41587-019-0070-x. PubMed DOI PMC

Amcheslavsky A., Wallace A.L., Ejemel M., Li Q., McMahon C.T., Stoppato M., Giuntini S., Schiller Z.A., Pondish J.R., Toomey J.R., et al. Anti-CfaE nanobodies provide broad cross-protection against major pathogenic enterotoxigenic Escherichia coli strains, with implications for vaccine design. Sci. Rep. 2021;11:2751. doi: 10.1038/s41598-021-81895-0. PubMed DOI PMC

Korkmaz E., Balmert S.C., Carey C.D., Erdos G., Falo L.D. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin. Drug. Deliv. 2021;18:151–167. doi: 10.1080/17425247.2021.1823964. PubMed DOI PMC

Kim Y.-C., Prausnitz M.R. Enabling skin vaccination using new delivery technologies. Drug Deliv. Transl. 2011;1:7–12. doi: 10.1007/s13346-010-0005-z. PubMed DOI PMC

Camacho A.I., Martins R.d., Tamayo I., de Souza J., Lasarte J.J., Mansilla C., Esparza I., Irache J.M., Gamazo C. Poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as innate immune system activators. Vaccine. 2011;29:7130–7135. doi: 10.1016/j.vaccine.2011.05.072. PubMed DOI

Tamayo I., Irache J.M., Mansilla C., Ochoa-Repáraz J., Lasarte J.J., Gamazo C. Poly(anhydride) nanoparticles act as active Th1 adjuvants through Toll-like receptor exploitation. Clin. Vaccine Immunol. 2010;17:1356–1362. doi: 10.1128/CVI.00164-10. PubMed DOI PMC

Hutton A.R.J., Quinn H.L., McCague P.J., Jarrahian C., Rein-Weston A., Coffey P.S., Gerth-Guyette E., Zehrung D., Larrañeta E., Donnelly R.F. Transdermal delivery of vitamin K using dissolving microneedles for the prevention of vitamin K deficiency bleeding. Int. J. Pharm. 2018;541:56–63. doi: 10.1016/j.ijpharm.2018.02.031. PubMed DOI PMC

An J.H., Lee H.J., Yoon M.S., Kim D.H. Anti-Wrinkle Efficacy of Cross-Linked Hyaluronic Acid-Based Microneedle Patch with Acetyl Hexapeptide-8 and Epidermal Growth Factor on Korean Skin. Ann. Dermatol. 2019;31:263. doi: 10.5021/ad.2019.31.3.263. PubMed DOI PMC

Klein S.L., Flanagan K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016;16:626–638. doi: 10.1038/nri.2016.90. PubMed DOI

Elderman M., van Beek A., Brandsma E., de Haan B., Savelkoul H., de Vos P., Faas M. Sex impacts Th1 cells, Tregs, and DCs in both intestinal and systemic immunity in a mouse strain and location-dependent manner. Biol. Sex Differ. 2016;7:21. doi: 10.1186/s13293-016-0075-9. PubMed DOI PMC

Liang Y., Kahlenberg J.M., Gudjonsson J.E. A vestigial pathway for sex differences in immune regulation. Cell. Mol. Immunol. 2017;14:578–580. doi: 10.1038/cmi.2017.28. PubMed DOI PMC

Liang Y., Tsoi L.C., Xing X., Beamer M.A., Swindell W.R., Sarkar M.K., Berthier C.C., Stuart P.E., Harms P.W., Nair R.P., et al. A gene network regulated by the transcription factor VGLL3 as a promoter of sex-biased autoimmune diseases. Nat. Immunol. 2017;18:152–160. doi: 10.1038/ni.3643. PubMed DOI PMC

Koyama Y.-I., Nagao S., Ohashi K., Takahashi H., Marunouchi T. Sex Differences in the Densities of Epidermal Langerhans Cells of the Mouse. J. Investig. Dermatol. 1987;88:541–544. doi: 10.1111/1523-1747.ep12470104. PubMed DOI

Chambers E.S., Vukmanovic-Stejic M. Skin barrier immunity and ageing. Immunology. 2020;160:116–125. doi: 10.1111/imm.13152. PubMed DOI PMC

West H.C., Bennett C.L. Redefining the Role of Langerhans Cells as Immune Regulators within the Skin. Front. Immunol. 2018;8:1941. doi: 10.3389/fimmu.2017.01941. PubMed DOI PMC

Tang N., Lu C.-Y., Sue S.-C., Chen T.-H., Jan J.-T., Huang M.-H., Huang C.-H., Chen C.-C., Chiang B.-L., Huang L.-M., et al. Type IIb Heat Labile Enterotoxin B Subunit as a Mucosal Adjuvant to Enhance Protective Immunity against H5N1 Avian Influenza Viruses. Vaccines. 2020;8:710. doi: 10.3390/vaccines8040710. PubMed DOI PMC

Aliahmadi E., Gramlich R., Grützkau A., Hitzler M., Krüger M., Baumgrass R., Schreiner M., Wittig B., Wanner R., Peiser M. TLR2-activated human langerhans cells promote Th17 polarization via IL-1beta, TGF-beta and IL-23. Eur. J. Immunol. 2009;39:1221–1230. doi: 10.1002/eji.200838742. PubMed DOI

Junttila I.S. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front. Immunol. 2018;9:888. doi: 10.3389/fimmu.2018.00888. PubMed DOI PMC

Marshall A.S., Silva J.R., Bannerman C.A., Gilron I., Ghasemlou N. Skin-Resident γδ T Cells Exhibit Site-Specific Morphology and Activation States. J. Immunol. Res. 2019;2019:9020234. doi: 10.1155/2019/9020234. PubMed DOI PMC

Born W.K., Kemal Aydintug M., O’Brien R.L. Diversity of γδ T-cell antigens. Cell. Mol. Immunol. 2013;10:13–20. doi: 10.1038/cmi.2012.45. PubMed DOI PMC

Frossard C.P., Asigbetse K.E., Burger D., Eigenmann P.A. Gut T cell receptor-γδ(+) intraepithelial lymphocytes are activated selectively by cholera toxin to break oral tolerance in mice. Clin. Exp. Immunol. 2015;180:118–130. doi: 10.1111/cei.12561. PubMed DOI PMC

Rosine N., Miceli-Richard C. Innate Cells: The Alternative Source of IL-17 in Axial and Peripheral Spondyloarthritis? Front. Immunol. 2021;11:3206. doi: 10.3389/fimmu.2020.553742. PubMed DOI PMC

Hirota K., Turner J.E., Villa M., Duarte J.H., Demengeot J., Steinmetz O.M., Stockinger B. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 2013;14:372–379. doi: 10.1038/ni.2552. PubMed DOI PMC

Clements J.D., Norton E.B. The Mucosal Vaccine Adjuvant LT(R192G/L211A) or dmLT. mSphere. 2018;3:e00215–e00218. doi: 10.1128/mSphere.00215-18. PubMed DOI PMC

Brereton C.F., Sutton C.E., Ross P.J., Iwakura Y., Pizza M., Rappuoli R., Lavelle E.C., Mills K.H. Escherichia coli heat-labile enterotoxin promotes protective Th17 responses against infection by driving innate IL-1 and IL-23 production. J. Immunol. 2011;186:5896–5906. doi: 10.4049/jimmunol.1003789. PubMed DOI

Brubaker J., Zhang X., Bourgeois A.L., Harro C., Sack D.A., Chakraborty S. Intestinal and systemic inflammation induced by symptomatic and asymptomatic enterotoxigenic E. coli infection and impact on intestinal colonization and ETEC specific immune responses in an experimental human challenge model. Gut Microbes. 2021;13:1–13. doi: 10.1080/19490976.2021.1891852. PubMed DOI PMC

Hajishengallis G., Tapping R.I., Martin M.H., Nawar H., Lyle E.A., Russell M.W., Connell T.D. Toll-Like Receptor 2 Mediates Cellular Activation by the B Subunits of Type II Heat-Labile Enterotoxins. Infect. Immun. 2005;73:1343–1349. doi: 10.1128/IAI.73.3.1343-1349.2005. PubMed DOI PMC

Lavelle E.C., Ward R.W. Mucosal vaccines—Fortifying the frontiers. Nat. Rev. Immunol. 2021;21:1–15. doi: 10.1038/s41577-021-00583-2. PubMed DOI PMC

Pharmather Press Releases. 2021. [(accessed on 12 January 2022)]. Available online: https://www.pharmather.com/news/pharmather-enters-into-process-development-agreeement-with-lts-lohmann-for-ketamine-microneedle-patch.

World Health Organization WHO Preferred Product Characteristics for Vaccines Against Enterotoxigenic Escherichia coli. 2021. [(accessed on 15 December 2021)]. Available online: https://apps.who.int/iris/bitstream/handle/10665/341507/9789240021839-eng.pdf?sequence=1.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...