Industrial Scale Manufacturing and Downstream Processing of PLGA-Based Nanomedicines Suitable for Fully Continuous Operation

. 2022 Jan 25 ; 14 (2) : . [epub] 20220125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35214009

Grantová podpora
PRECIOUS 686089 European Union

Odkazy

PubMed 35214009
PubMed Central PMC8878443
DOI 10.3390/pharmaceutics14020276
PII: pharmaceutics14020276
Knihovny.cz E-zdroje

Despite the efficacy and potential therapeutic benefits that poly(lactic-co-glycolic acid) (PLGA) nanomedicine formulations can offer, challenges related to large-scale processing hamper their clinical and commercial development. Major hurdles for the launch of a polymeric nanocarrier product on the market are batch-to-batch variations and lack of product consistency in scale-up manufacturing. Therefore, a scalable and robust manufacturing technique that allows for the transfer of nanomedicine production from the benchtop to an industrial scale is highly desirable. Downstream processes for purification, concentration, and storage of the nanomedicine formulations are equally indispensable. Here, we develop an inline sonication process for the production of polymeric PLGA nanomedicines at the industrial scale. The process and formulation parameters are optimized to obtain PLGA nanoparticles with a mean diameter of 150 ± 50 nm and a small polydispersity index (PDI < 0.2). Downstream processes based on tangential flow filtration (TFF) technology and lyophilization for the washing, concentration, and storage of formulations are also established and discussed. Using the developed manufacturing and downstream processing technologies, production of two PLGA nanoformulations encasing ritonavir and celecoxib was achieved at 84 g/h rate. As a measure of actual drug content, encapsulation efficiencies of 49.5 ± 3.2% and 80.3 ± 0.9% were achieved for ritonavir and celecoxib, respectively. When operated in-series, inline sonication and TFF can be adapted for fully continuous, industrial-scale processing of PLGA-based nanomedicines.

Zobrazit více v PubMed

Operti M.C., Bernhardt A., Grimm S., Engel A., Figdor C.G., Tagit O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int. J. Pharm. 2021;605:120807. doi: 10.1016/j.ijpharm.2021.120807. PubMed DOI

Agrahari V., Agrahari V. Facilitating the translation of nanomedicines to a clinical product: Challenges and opportunities. Drug Discov. Today. 2018;23:974–991. doi: 10.1016/j.drudis.2018.01.047. PubMed DOI

Agrahari V., Hiremath P. Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine. 2017;12:819–823. doi: 10.2217/nnm-2017-0039. PubMed DOI

Paliwal R., Babu R.J., Palakurthi S. Nanomedicine scale-up technologies: Feasibilities and challenges. AAPS PharmSciTech. 2014;15:1527–1534. doi: 10.1208/s12249-014-0177-9. PubMed DOI PMC

Sun Q., Radosz M., Shen Y. Challenges in design of translational nanocarriers. J. Control. Release. 2012;164:156–169. doi: 10.1016/j.jconrel.2012.05.042. PubMed DOI

Operti M.C., Fecher D., van Dinther E.A.W., Grimm S., Jaber R., Figdor C.G., Tagit O. A comparative assessment of continuous production techniques to generate sub-micron size PLGA particles. Int. J. Pharm. 2018;550:140–148. doi: 10.1016/j.ijpharm.2018.08.044. PubMed DOI

Schiller S., Hanefeld A., Schneider M., Lehr C.-M. Focused Ultrasound as a Scalable and Contact-Free Method to Manufacture Protein-Loaded PLGA Nanoparticles. Pharm. Res. 2015;32:2995–3006. doi: 10.1007/s11095-015-1681-7. PubMed DOI

Reich G. Ultrasound-induced degradation of PLA and PLGA during microsphere processing: Influence of formulation variables. Eur. J. Pharm. Biopharm. 1998;45:165–171. doi: 10.1016/S0939-6411(97)00152-5. PubMed DOI

Mohod A.V., Gogate P.R. Ultrasonic degradation of polymers: Effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) Ultrason. Sonochem. 2011;18:727–734. doi: 10.1016/j.ultsonch.2010.11.002. PubMed DOI

Freitas S., Hielscher G., Merkle H.P., Gander B. Continuous contact- and contamination-free ultrasonic emulsification—A useful tool for pharmaceutical development and production. Ultrason. Sonochem. 2006;13:76–85. doi: 10.1016/j.ultsonch.2004.10.004. PubMed DOI

Dalwadi G., Benson H.A., Chen Y. Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm. Res. 2005;22:2152–2162. doi: 10.1007/s11095-005-7781-z. PubMed DOI

Clutterbuck A., Beckett P., Lorenzi R., Sengler F., Bisschop T., Haas J. Continuous Biomanufacturing—Innovative Technologies and Methods. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2017. Single-Pass Tangential Flow Filtration (SPTFF) in Continuous Biomanufacturing; pp. 423–456.

Destache C.J., Belgum T., Christensen K., Shibata A., Sharma A., Dash A. Combination antiretroviral drugs in PLGA nanoparticle for HIV-1. BMC Infect. Dis. 2009;9:198. doi: 10.1186/1471-2334-9-198. PubMed DOI PMC

Cooper D.L., Harirforoosh S. Effect of Formulation Variables on Preparation of Celecoxib Loaded Polylactide-Co-Glycolide Nanoparticles. PLoS ONE. 2014;9:e113558. PubMed PMC

Grosch S., Monakhova Y.B., Kuballa T., Ruge W., Kimmich R., Lachenmeier D.W. Comparison of GC/MS and NMR for quantification of methyleugenol in food. Eur. Food Res. Technol. 2013;236:267–275. doi: 10.1007/s00217-012-1879-4. DOI

Kram T.C., Turczan J.W. Determination of DMSO in solutions and ointments by NMR. J. Pharm. Sci. 1968;57:651–652. doi: 10.1002/jps.2600570425. PubMed DOI

Khatun R., Hunter H., Magcalas W., Sheng Y., Carpick B., Kirkitadze M. Nuclear Magnetic Resonance (NMR) Study for the Detection and Quantitation of Cholesterol in HSV529 Therapeutic Vaccine Candidate. Comput. Struct. Biotechnol. J. 2017;15:14–20. doi: 10.1016/j.csbj.2016.10.007. PubMed DOI PMC

Maes P., Monakhova Y.B., Kuballa T., Reusch H., Lachenmeier D.W. Qualitative and Quantitative Control of Carbonated Cola Beverages Using 1H NMR Spectroscopy. J. Agric. Food Chem. 2012;60:2778–2784. doi: 10.1021/jf204777m. PubMed DOI PMC

Sun S., Jin M., Zhou X., Ni J., Jin X., Liu H., Wang Y. The Application of Quantitative 1H-NMR for the Determination of Orlistat in Tablets. Molecules. 2017;22:1517. doi: 10.3390/molecules22091517. PubMed DOI PMC

Joshi D.P., Lan-Chun-Fung Y.L., Pritchard J.G. Determination of poly(vinyl alcohol) via its complex with boric acid and iodine. Anal. Chim. Acta. 1979;104:153–160. doi: 10.1016/S0003-2670(01)83825-3. DOI

Sahoo S.K., Panyam J., Prabha S., Labhasetwar V. Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release. 2002;82:105–114. doi: 10.1016/S0168-3659(02)00127-X. PubMed DOI

Sahana D.K., Mittal G., Bhardwaj V., Kumar M.N.V.R. PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug. J. Pharm. Sci. 2008;97:1530–1542. doi: 10.1002/jps.21158. PubMed DOI

Dölen Y., Valente M., Tagit O., Jäger E., Van Dinther E.A.W., van Riessen N.K., Hruby M., Gileadi U., Cerundolo V., Figdor C.G. Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. OncoImmunology. 2020;9:1738813. doi: 10.1080/2162402X.2020.1738813. PubMed DOI PMC

Galvao J., Davis B., Tilley M., Normando E., Duchen M.R., Cordeiro M.F. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 2014;28:1317–1330. doi: 10.1096/fj.13-235440. PubMed DOI

Lagreca E., Onesto V., Di Natale C., La Manna S., Netti P.A., Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog. Biomater. 2020;9:153–174. doi: 10.1007/s40204-020-00139-y. PubMed DOI PMC

Song K.C., Lee H.S., Choung I.Y., Cho K.I., Ahn Y., Choi E.J. The effect of type of organic phase solvents on the particle size of poly(d,l-lactide-co-glycolide) nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2006;276:162–167. doi: 10.1016/j.colsurfa.2005.10.064. DOI

PubChem Dimethyl Sulfoxide Solubility. [(accessed on 18 July 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/679#section=Solubility.

Wong D.B., Sokolowsky K.P., El-Barghouthi M.I., Fenn E.E., Giammanco C.H., Sturlaugson A.L., Fayer M.D. Water Dynamics in Water/DMSO Binary Mixtures. J. Phys. Chem. B. 2012;116:5479–5490. doi: 10.1021/jp301967e. PubMed DOI

Murakami H., Kobayashi M., Takeuchi H., Kawashima Y. Preparation of poly(dl-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int. J. Pharm. 1999;187:143–152. doi: 10.1016/S0378-5173(99)00187-8. PubMed DOI

PubChem Dichloromethane Solubility. [(accessed on 18 July 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Dichloromethane#section=Solubility.

Srihaphon K., Lamlertthon S., Pitaksuteepong T. Influence of stabilizers and cryoprotectants on the characteristics of freeze-dried PLGA nanoparticles containing Morus alba stem extract. Songklanakarin J. Sci. Technol. 2021;43:72–79.

Operti M.C., Dölen Y., Keulen J., van Dinther E.A., Figdor C.G., Tagit O. Microfluidics-Assisted Size Tuning and Biological Evaluation of PLGA Particles. Pharmaceutics. 2019;11:590. doi: 10.3390/pharmaceutics11110590. PubMed DOI PMC

Teramoto N., Sachinvala N.D., Shibata M. Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules. 2008;13:1773–1816. doi: 10.3390/molecules13081773. PubMed DOI PMC

Nema S., Brendel R.J. Excipients and their role in approved injectable products: Current usage and future directions. PDA J. Pharm. Sci. Technol. 2011;65:287–332. doi: 10.5731/pdajpst.2011.00634. PubMed DOI

Paulusse J., Sijbesma R. Ultrasound in polymer chemistry: Revival of an established technique. J. Polym. Sci. Part A Polym. Chem. 2006;44:5445–5453. doi: 10.1002/pola.21646. DOI

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Impurities: Guideline for Residual Solvents. [(accessed on 27 August 2021)]. Available online: https://database.ich.org/sites/default/files/Q3C-R6_Guideline_ErrorCorrection_2019_0410_0.pdf.

PubChem Ethyl Acetate Solubility. [(accessed on 27 August 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/8857#section=Solubility.

Gangapurwala G., Vollrath A., De San Luis A., Schubert U.S. PLA/PLGA-Based Drug Delivery Systems Produced with Supercritical CO(2)-A Green Future for Particle Formulation? Pharmaceutics. 2020;12:1118. doi: 10.3390/pharmaceutics12111118. PubMed DOI PMC

Dölen Y., Gileadi U., Chen J.-L., Valente M., Creemers J.H.A., Van Dinther E.A.W., van Riessen N.K., Jäger E., Hruby M., Cerundolo V., et al. PLGA Nanoparticles Co-encapsulating NY-ESO-1 Peptides and IMM60 Induce Robust CD8 and CD4 T Cell and B Cell Responses. Front. Immunol. 2021;12:641703. doi: 10.3389/fimmu.2021.641703. PubMed DOI PMC

PubChem Ritonavir. [(accessed on 1 October 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/392622.

PubChem Celecoxib. [(accessed on 1 October 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2662#section=Computed-Properties.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...