Industrial Scale Manufacturing and Downstream Processing of PLGA-Based Nanomedicines Suitable for Fully Continuous Operation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PRECIOUS 686089
European Union
PubMed
35214009
PubMed Central
PMC8878443
DOI
10.3390/pharmaceutics14020276
PII: pharmaceutics14020276
Knihovny.cz E-zdroje
- Klíčová slova
- PLGA, clinical translation, downstream processing, inline sonication, lyophilization, nanomedicine, nanoparticles, poly(lactic-co-glycolic acid), scale-up manufacturing, tangential flow filtration,
- Publikační typ
- časopisecké články MeSH
Despite the efficacy and potential therapeutic benefits that poly(lactic-co-glycolic acid) (PLGA) nanomedicine formulations can offer, challenges related to large-scale processing hamper their clinical and commercial development. Major hurdles for the launch of a polymeric nanocarrier product on the market are batch-to-batch variations and lack of product consistency in scale-up manufacturing. Therefore, a scalable and robust manufacturing technique that allows for the transfer of nanomedicine production from the benchtop to an industrial scale is highly desirable. Downstream processes for purification, concentration, and storage of the nanomedicine formulations are equally indispensable. Here, we develop an inline sonication process for the production of polymeric PLGA nanomedicines at the industrial scale. The process and formulation parameters are optimized to obtain PLGA nanoparticles with a mean diameter of 150 ± 50 nm and a small polydispersity index (PDI < 0.2). Downstream processes based on tangential flow filtration (TFF) technology and lyophilization for the washing, concentration, and storage of formulations are also established and discussed. Using the developed manufacturing and downstream processing technologies, production of two PLGA nanoformulations encasing ritonavir and celecoxib was achieved at 84 g/h rate. As a measure of actual drug content, encapsulation efficiencies of 49.5 ± 3.2% and 80.3 ± 0.9% were achieved for ritonavir and celecoxib, respectively. When operated in-series, inline sonication and TFF can be adapted for fully continuous, industrial-scale processing of PLGA-based nanomedicines.
Evonik Corporation Birmingham Laboratories Birmingham AL 35211 USA
Evonik Operations GmbH Research Development and Innovation 64293 Darmstadt Germany
Institute of Macromolecular Chemistry CAS Heyrovsky Square 2 162 06 Prague Czech Republic
Zobrazit více v PubMed
Operti M.C., Bernhardt A., Grimm S., Engel A., Figdor C.G., Tagit O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int. J. Pharm. 2021;605:120807. doi: 10.1016/j.ijpharm.2021.120807. PubMed DOI
Agrahari V., Agrahari V. Facilitating the translation of nanomedicines to a clinical product: Challenges and opportunities. Drug Discov. Today. 2018;23:974–991. doi: 10.1016/j.drudis.2018.01.047. PubMed DOI
Agrahari V., Hiremath P. Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine. 2017;12:819–823. doi: 10.2217/nnm-2017-0039. PubMed DOI
Paliwal R., Babu R.J., Palakurthi S. Nanomedicine scale-up technologies: Feasibilities and challenges. AAPS PharmSciTech. 2014;15:1527–1534. doi: 10.1208/s12249-014-0177-9. PubMed DOI PMC
Sun Q., Radosz M., Shen Y. Challenges in design of translational nanocarriers. J. Control. Release. 2012;164:156–169. doi: 10.1016/j.jconrel.2012.05.042. PubMed DOI
Operti M.C., Fecher D., van Dinther E.A.W., Grimm S., Jaber R., Figdor C.G., Tagit O. A comparative assessment of continuous production techniques to generate sub-micron size PLGA particles. Int. J. Pharm. 2018;550:140–148. doi: 10.1016/j.ijpharm.2018.08.044. PubMed DOI
Schiller S., Hanefeld A., Schneider M., Lehr C.-M. Focused Ultrasound as a Scalable and Contact-Free Method to Manufacture Protein-Loaded PLGA Nanoparticles. Pharm. Res. 2015;32:2995–3006. doi: 10.1007/s11095-015-1681-7. PubMed DOI
Reich G. Ultrasound-induced degradation of PLA and PLGA during microsphere processing: Influence of formulation variables. Eur. J. Pharm. Biopharm. 1998;45:165–171. doi: 10.1016/S0939-6411(97)00152-5. PubMed DOI
Mohod A.V., Gogate P.R. Ultrasonic degradation of polymers: Effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) Ultrason. Sonochem. 2011;18:727–734. doi: 10.1016/j.ultsonch.2010.11.002. PubMed DOI
Freitas S., Hielscher G., Merkle H.P., Gander B. Continuous contact- and contamination-free ultrasonic emulsification—A useful tool for pharmaceutical development and production. Ultrason. Sonochem. 2006;13:76–85. doi: 10.1016/j.ultsonch.2004.10.004. PubMed DOI
Dalwadi G., Benson H.A., Chen Y. Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm. Res. 2005;22:2152–2162. doi: 10.1007/s11095-005-7781-z. PubMed DOI
Clutterbuck A., Beckett P., Lorenzi R., Sengler F., Bisschop T., Haas J. Continuous Biomanufacturing—Innovative Technologies and Methods. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2017. Single-Pass Tangential Flow Filtration (SPTFF) in Continuous Biomanufacturing; pp. 423–456.
Destache C.J., Belgum T., Christensen K., Shibata A., Sharma A., Dash A. Combination antiretroviral drugs in PLGA nanoparticle for HIV-1. BMC Infect. Dis. 2009;9:198. doi: 10.1186/1471-2334-9-198. PubMed DOI PMC
Cooper D.L., Harirforoosh S. Effect of Formulation Variables on Preparation of Celecoxib Loaded Polylactide-Co-Glycolide Nanoparticles. PLoS ONE. 2014;9:e113558. PubMed PMC
Grosch S., Monakhova Y.B., Kuballa T., Ruge W., Kimmich R., Lachenmeier D.W. Comparison of GC/MS and NMR for quantification of methyleugenol in food. Eur. Food Res. Technol. 2013;236:267–275. doi: 10.1007/s00217-012-1879-4. DOI
Kram T.C., Turczan J.W. Determination of DMSO in solutions and ointments by NMR. J. Pharm. Sci. 1968;57:651–652. doi: 10.1002/jps.2600570425. PubMed DOI
Khatun R., Hunter H., Magcalas W., Sheng Y., Carpick B., Kirkitadze M. Nuclear Magnetic Resonance (NMR) Study for the Detection and Quantitation of Cholesterol in HSV529 Therapeutic Vaccine Candidate. Comput. Struct. Biotechnol. J. 2017;15:14–20. doi: 10.1016/j.csbj.2016.10.007. PubMed DOI PMC
Maes P., Monakhova Y.B., Kuballa T., Reusch H., Lachenmeier D.W. Qualitative and Quantitative Control of Carbonated Cola Beverages Using 1H NMR Spectroscopy. J. Agric. Food Chem. 2012;60:2778–2784. doi: 10.1021/jf204777m. PubMed DOI PMC
Sun S., Jin M., Zhou X., Ni J., Jin X., Liu H., Wang Y. The Application of Quantitative 1H-NMR for the Determination of Orlistat in Tablets. Molecules. 2017;22:1517. doi: 10.3390/molecules22091517. PubMed DOI PMC
Joshi D.P., Lan-Chun-Fung Y.L., Pritchard J.G. Determination of poly(vinyl alcohol) via its complex with boric acid and iodine. Anal. Chim. Acta. 1979;104:153–160. doi: 10.1016/S0003-2670(01)83825-3. DOI
Sahoo S.K., Panyam J., Prabha S., Labhasetwar V. Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release. 2002;82:105–114. doi: 10.1016/S0168-3659(02)00127-X. PubMed DOI
Sahana D.K., Mittal G., Bhardwaj V., Kumar M.N.V.R. PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug. J. Pharm. Sci. 2008;97:1530–1542. doi: 10.1002/jps.21158. PubMed DOI
Dölen Y., Valente M., Tagit O., Jäger E., Van Dinther E.A.W., van Riessen N.K., Hruby M., Gileadi U., Cerundolo V., Figdor C.G. Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. OncoImmunology. 2020;9:1738813. doi: 10.1080/2162402X.2020.1738813. PubMed DOI PMC
Galvao J., Davis B., Tilley M., Normando E., Duchen M.R., Cordeiro M.F. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 2014;28:1317–1330. doi: 10.1096/fj.13-235440. PubMed DOI
Lagreca E., Onesto V., Di Natale C., La Manna S., Netti P.A., Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog. Biomater. 2020;9:153–174. doi: 10.1007/s40204-020-00139-y. PubMed DOI PMC
Song K.C., Lee H.S., Choung I.Y., Cho K.I., Ahn Y., Choi E.J. The effect of type of organic phase solvents on the particle size of poly(d,l-lactide-co-glycolide) nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2006;276:162–167. doi: 10.1016/j.colsurfa.2005.10.064. DOI
PubChem Dimethyl Sulfoxide Solubility. [(accessed on 18 July 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/679#section=Solubility.
Wong D.B., Sokolowsky K.P., El-Barghouthi M.I., Fenn E.E., Giammanco C.H., Sturlaugson A.L., Fayer M.D. Water Dynamics in Water/DMSO Binary Mixtures. J. Phys. Chem. B. 2012;116:5479–5490. doi: 10.1021/jp301967e. PubMed DOI
Murakami H., Kobayashi M., Takeuchi H., Kawashima Y. Preparation of poly(dl-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int. J. Pharm. 1999;187:143–152. doi: 10.1016/S0378-5173(99)00187-8. PubMed DOI
PubChem Dichloromethane Solubility. [(accessed on 18 July 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Dichloromethane#section=Solubility.
Srihaphon K., Lamlertthon S., Pitaksuteepong T. Influence of stabilizers and cryoprotectants on the characteristics of freeze-dried PLGA nanoparticles containing Morus alba stem extract. Songklanakarin J. Sci. Technol. 2021;43:72–79.
Operti M.C., Dölen Y., Keulen J., van Dinther E.A., Figdor C.G., Tagit O. Microfluidics-Assisted Size Tuning and Biological Evaluation of PLGA Particles. Pharmaceutics. 2019;11:590. doi: 10.3390/pharmaceutics11110590. PubMed DOI PMC
Teramoto N., Sachinvala N.D., Shibata M. Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules. 2008;13:1773–1816. doi: 10.3390/molecules13081773. PubMed DOI PMC
Nema S., Brendel R.J. Excipients and their role in approved injectable products: Current usage and future directions. PDA J. Pharm. Sci. Technol. 2011;65:287–332. doi: 10.5731/pdajpst.2011.00634. PubMed DOI
Paulusse J., Sijbesma R. Ultrasound in polymer chemistry: Revival of an established technique. J. Polym. Sci. Part A Polym. Chem. 2006;44:5445–5453. doi: 10.1002/pola.21646. DOI
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) Impurities: Guideline for Residual Solvents. [(accessed on 27 August 2021)]. Available online: https://database.ich.org/sites/default/files/Q3C-R6_Guideline_ErrorCorrection_2019_0410_0.pdf.
PubChem Ethyl Acetate Solubility. [(accessed on 27 August 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/8857#section=Solubility.
Gangapurwala G., Vollrath A., De San Luis A., Schubert U.S. PLA/PLGA-Based Drug Delivery Systems Produced with Supercritical CO(2)-A Green Future for Particle Formulation? Pharmaceutics. 2020;12:1118. doi: 10.3390/pharmaceutics12111118. PubMed DOI PMC
Dölen Y., Gileadi U., Chen J.-L., Valente M., Creemers J.H.A., Van Dinther E.A.W., van Riessen N.K., Jäger E., Hruby M., Cerundolo V., et al. PLGA Nanoparticles Co-encapsulating NY-ESO-1 Peptides and IMM60 Induce Robust CD8 and CD4 T Cell and B Cell Responses. Front. Immunol. 2021;12:641703. doi: 10.3389/fimmu.2021.641703. PubMed DOI PMC
PubChem Ritonavir. [(accessed on 1 October 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/392622.
PubChem Celecoxib. [(accessed on 1 October 2021)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2662#section=Computed-Properties.