PLGA Nanoparticles Co-encapsulating NY-ESO-1 Peptides and IMM60 Induce Robust CD8 and CD4 T Cell and B Cell Responses
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Medical Research Council - United Kingdom
PubMed
33717196
PubMed Central
PMC7947615
DOI
10.3389/fimmu.2021.641703
Knihovny.cz E-resources
- Keywords
- B cell epitope, CD4 T cell, CD8 T cell, IMM60, NY-ESO-1, PLGA nanoparticle, iNKT cell, peptide vaccine,
- MeSH
- B-Lymphocytes immunology MeSH
- CD4-Positive T-Lymphocytes immunology MeSH
- CD8-Positive T-Lymphocytes immunology MeSH
- Polylactic Acid-Polyglycolic Acid Copolymer chemistry pharmacology MeSH
- Humans MeSH
- Neoplasm Proteins chemistry pharmacology MeSH
- Nanoparticles chemistry therapeutic use MeSH
- Drug Carriers chemistry pharmacology MeSH
- Peptide Fragments chemistry pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Polylactic Acid-Polyglycolic Acid Copolymer MeSH
- Neoplasm Proteins MeSH
- Drug Carriers MeSH
- peptide NY-ESO-1 157-165 MeSH Browser
- Peptide Fragments MeSH
Tumor-specific neoantigens can be highly immunogenic, but their identification for each patient and the production of personalized cancer vaccines can be time-consuming and prohibitively expensive. In contrast, tumor-associated antigens are widely expressed and suitable as an off the shelf immunotherapy. Here, we developed a PLGA-based nanoparticle vaccine that contains both the immunogenic cancer germline antigen NY-ESO-1 and an α-GalCer analog IMM60, as a novel iNKT cell agonist and dendritic cell transactivator. Three peptide sequences (85-111, 117-143, and 157-165) derived from immunodominant regions of NY-ESO-1 were selected. These peptides have a wide HLA coverage and were efficiently processed and presented by dendritic cells via various HLA subtypes. Co-delivery of IMM60 enhanced CD4 and CD8 T cell responses and antibody levels against NY-ESO-1 in vivo. Moreover, the nanoparticles have negligible systemic toxicity in high doses, and they could be produced according to GMP guidelines. Together, we demonstrated the feasibility of producing a PLGA-based nanovaccine containing immunogenic peptides and an iNKT cell agonist, that is activating DCs to induce antigen-specific T cell responses.
Aix Marseille Univ CNRS INSERM CIML Centre d'Immunologie de Marseille Luminy Marseille France
Institute of Macromolecular Chemistry v v i Academy of Sciences of the Czech Republic Prague Czechia
See more in PubMed
Janelle V, Rulleau C, Del Testa S, Carli C, Delisle JS. T-Cell Immunotherapies targeting histocompatibility and tumor antigens in hematological malignancies. Front Immunol. (2020) 11:276. 10.3389/fimmu.2020.00276 PubMed DOI PMC
Akers SN, Odunsi K, Karpf AR. Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy. Future Oncol. (2010) 6:717–32. 10.2217/fon.10.36 PubMed DOI PMC
Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, et al. . NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol. (2018) 9:947. 10.3389/fimmu.2018.00947 PubMed DOI PMC
Esfandiary A, Ghafouri-Fard S. New York esophageal squamous cell carcinoma-1 and cancer immunotherapy. Immunotherapy. (2015) 7:411–39. 10.2217/imt.15.3 PubMed DOI
Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. (2007) 25:297–336. 10.1146/annurev.immunol.25.022106.141711 PubMed DOI
Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol. (2013) 13:101–17. 10.1038/nri3369 PubMed DOI
Cerundolo V, Silk JD, Masri SH, Salio M. Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol. (2009) 9:28–38. 10.1038/nri2451 PubMed DOI
Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, et al. . A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA. (1997) 94:1914–8. 10.1073/pnas.94.5.1914 PubMed DOI PMC
Jungbluth AA, Chen YT, Stockert E, Busam KJ, Kolb D, Iversen K, et al. . Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues. Int J Cancer. (2001) 92:856–60. 10.1002/ijc.1282 PubMed DOI
Gnjatic S, Nishikawa H, Jungbluth AA, Gure AO, Ritter G, Jager E, et al. . NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res. (2006) 95:1–30. 10.1016/S0065-230X(06)95001-5 PubMed DOI
Kakimi K, Isobe M, Uenaka A, Wada H, Sato E, Doki Y, et al. . A phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. Int J Cancer. (2011) 129:2836–46. 10.1002/ijc.25955 PubMed DOI
Odunsi K, Matsuzaki J, James SR, Mhawech-Fauceglia P, Tsuji T, Miller A, et al. . Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol Res. (2014) 2:37–49. 10.1158/2326-6066.CIR-13-0126 PubMed DOI PMC
Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, et al. . An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. (2020) 585:107–12. 10.1038/s41586-020-2537-9 PubMed DOI
Dolen Y, Kreutz M, Gileadi U, Tel J, Vasaturo A, van Dinther EA, et al. . Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses. Oncoimmunology. (2016) 5:e1068493. 10.1080/2162402X.2015.1068493 PubMed DOI PMC
Dölen Y, Valente M, Tagit O, Jäger E, Van Dinther EAW, van Riessen NK, et al. . Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. OncoImmunology. (2020) 9:1738813. 10.1080/2162402X.2020.1738813 PubMed DOI PMC
Valente M, Dolen Y, van Dinther E, Vimeux L, Fallet M, Feuillet V, et al. . Cross-talk between iNKT cells and CD8 T cells in the spleen requires the IL-4/CCL17 axis for the generation of short-lived effector cells. Proc Natl Acad Sci USA. (2019) 116:25816–27. 10.1073/pnas.1913491116 PubMed DOI PMC
Bartkowiak T, Singh S, Yang G, Galvan G, Haria D, Ai M, et al. . Unique potential of 4-1BB agonist antibody to promote durable regression of HPV+ tumors when combined with an E6/E7 peptide vaccine. Proc Natl Acad Sci USA. (2015) 112:E5290–9. 10.1073/pnas.1514418112 PubMed DOI PMC
Jukes JP, Gileadi U, Ghadbane H, Yu TF, Shepherd D, Cox LR, et al. . Non-glycosidic compounds can stimulate both human and mouse iNKT cells. Eur J Immunol. (2016) 46:1224–34. 10.1002/eji.201546114 PubMed DOI PMC
Robson NC, McAlpine T, Knights AJ, Schnurr M, Shin A, Chen W, et al. . Processing and cross-presentation of individual HLA-A, -B, or -C epitopes from NY-ESO-1 or an HLA-A epitope for Melan-A differ according to the mode of antigen delivery. Blood. (2010) 116:218–25. 10.1182/blood-2009-10-249458 PubMed DOI
Chen JL, Dawoodji A, Tarlton A, Gnjatic S, Tajar A, Karydis I, et al. . NY-ESO-1 specific antibody and cellular responses in melanoma patients primed with NY-ESO-1 protein in ISCOMATRIX and boosted with recombinant NY-ESO-1 fowlpox virus. Int J Cancer. (2015) 136:E590–601. 10.1002/ijc.29118 PubMed DOI
Choi EM, Palmowski M, Chen J, Cerundolo V. The use of chimeric A2K(b) tetramers to monitor HLA A2 immune responses in HLA A2 transgenic mice. J Immunol Methods. (2002) 268:35–41. 10.1016/S0022-1759(02)00198-9 PubMed DOI
Jackson H, Dimopoulos N, Mifsud NA, Tai TY, Chen Q, Svobodova S, et al. . Striking immunodominance hierarchy of naturally occurring CD8+ and CD4+ T cell responses to tumor antigen NY-ESO-1. J Immunol. (2006) 176:5908–17. 10.4049/jimmunol.176.10.5908 PubMed DOI
Nguyen DT. Cancer Antigenic Peptide Database. (2019). Available online at: https://caped.icp.ucl.ac.be/Peptide/list (accessed January 21, 2019).
Gnjatic S, Jager E, Chen W, Altorki NK, Matsuo M, Lee SY, et al. . CD8(+) T cell responses against a dominant cryptic HLA-A2 epitope after NY-ESO-1 peptide immunization of cancer patients. Proc Natl Acad Sci USA. (2002) 99:11813–8. 10.1073/pnas.142417699 PubMed DOI PMC
IEDB Analysis Resource: National Institute of Allergy Infectious Diseases. (2019). Available online at: https://tools.iedb.org/population/ (accessed January 21, 2019).
Bidmon N, Attig S, Rae R, Schroder H, Omokoko TA, Simon P, et al. . Generation of TCR-engineered T cells and their use to control the performance of T cell assays. J Immunol. (2015) 194:6177–89. 10.4049/jimmunol.1400958 PubMed DOI
Simon P, Omokoko TA, Breitkreuz A, Hebich L, Kreiter S, Attig S, et al. . Functional TCR retrieval from single antigen-specific human T cells reveals multiple novel epitopes. Cancer Immunol Res. (2014) 2:1230–44. 10.1158/2326-6066.CIR-14-0108 PubMed DOI
Jia J, Zhang Y, Xin Y, Jiang C, Yan B, Zhai S. Interactions between nanoparticles and dendritic cells: from the perspective of cancer immunotherapy. Front Oncol. (2018) 8:404. 10.3389/fonc.2018.00404 PubMed DOI PMC
Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, et al. . Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. (2019) 23:20. 10.1186/s40824-019-0166-x PubMed DOI PMC
Benlalam H, Linard B, Guilloux Y, Moreau-Aubry A, Derre L, Diez E, et al. . Identification of five new HLA-B*3501-restricted epitopes derived from common melanoma-associated antigens, spontaneously recognized by tumor-infiltrating lymphocytes. J Immunol. (2003) 171:6283–9. 10.4049/jimmunol.171.11.6283 PubMed DOI
Lopes L, Dewannieux M, Gileadi U, Bailey R, Ikeda Y, Whittaker C, et al. . Immunization with a lentivector that targets tumor antigen expression to dendritic cells induces potent CD8+ and CD4+ T-cell responses. J Virol. (2008) 82:86–95. 10.1128/JVI.01289-07 PubMed DOI PMC
Firat H, Garcia-Pons F, Tourdot S, Pascolo S, Scardino A, Garcia Z, et al. . H-2 class I knockout, HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies. Eur J Immunol. (1999) 29:3112–21. PubMed
Newberg MH, Smith DH, Haertel SB, Vining DR, Lacy E, Engelhard VH. Importance of MHC class 1 alpha2 and alpha3 domains in the recognition of self and non-self MHC molecules. J Immunol. (1996) 156:2473–80. PubMed
Kageyama S, Wada H, Muro K, Niwa Y, Ueda S, Miyata H, et al. . Dose-dependent effects of NY-ESO-1 protein vaccine complexed with cholesteryl pullulan (CHP-NY-ESO-1) on immune responses and survival benefits of esophageal cancer patients. J Transl Med. (2013) 11:246. 10.1186/1479-5876-11-246 PubMed DOI PMC
Qiu L, Valente M, Dolen Y, Jager E, Beest MT, Zheng L, et al. . Endolysosomal-escape nanovaccines through adjuvant-induced tumor antigen assembly for enhanced effector CD8(+) T cell activation. Small. (2018) 14:e1703539. 10.1002/smll.201703539 PubMed DOI
Wada H, Isobe M, Kakimi K, Mizote Y, Eikawa S, Sato E, et al. . Vaccination with NY-ESO-1 overlapping peptides mixed with Picibanil OK-432 and montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. J Immunother. (2014) 37:84–92. 10.1097/CJI.0000000000000017 PubMed DOI
Baumgaertner P, Costa Nunes C, Cachot A, Maby-El Hajjami H, Cagnon L, Braun M, et al. . Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8(+) and CD4(+) T-cell responses with multiple specificities including a novel DR7-restricted epitope. Oncoimmunology. (2016) 5:e1216290. 10.1080/2162402X.2016.1216290 PubMed DOI PMC
Gasser O, Sharples KJ, Barrow C, Williams GM, Bauer E, Wood CE, et al. . A phase I vaccination study with dendritic cells loaded with NY-ESO-1 and alpha-galactosylceramide: induction of polyfunctional T cells in high-risk melanoma patients. Cancer Immunol Immunother. (2018) 67:285–98. 10.1007/s00262-017-2085-9 PubMed DOI PMC
Dutoit V, Taub RN, Papadopoulos KP, Talbot S, Keohan ML, Brehm M, et al. . Multiepitope CD8(+) T cell response to a NY-ESO-1 peptide vaccine results in imprecise tumor targeting. J Clin Invest. (2002) 110:1813–22. 10.1172/JCI16428 PubMed DOI PMC
Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, van der Burg SH, Offringa R. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol. (2008) 38:1033–42. 10.1002/eji.200737995 PubMed DOI
Globisch T, Steiner N, Fulle L, Lukacs-Kornek V, Degrandi D, Dresing P, et al. . Cytokine-dependent regulation of dendritic cell differentiation in the splenic microenvironment. Eur J Immunol. (2014) 44:500–10. 10.1002/eji.201343820 PubMed DOI
Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med. (2003) 198:267–79. 10.1084/jem.20030324 PubMed DOI PMC
Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, et al. . NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol. (2003) 171:5140–7. 10.4049/jimmunol.171.10.5140 PubMed DOI
Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, et al. . Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med. (2008) 358:2698–703. 10.1056/NEJMoa0800251 PubMed DOI PMC
Fonteneau JF, Brilot F, Munz C, Gannage M. The tumor antigen NY-ESO-1 mediates direct recognition of melanoma cells by CD4+ T cells after intercellular antigen transfer. J Immunol. (2016) 196:64–71. 10.4049/jimmunol.1402664 PubMed DOI PMC
Tonti E, Galli G, Malzone C, Abrignani S, Casorati G, Dellabona P. NKT-cell help to B lymphocytes can occur independently of cognate interaction. Blood. (2009) 113:370–6. 10.1182/blood-2008-06-166249 PubMed DOI
Dellabona P, Abrignani S, Casorati G. iNKT-cell help to B cells: a cooperative job between innate and adaptive immune responses. Eur J Immunol. (2014) 44:2230–7. 10.1002/eji.201344399 PubMed DOI