pH and ROS Responsiveness of Polymersome Nanovaccines for Antigen and Adjuvant Codelivery: An In Vitro and In Vivo Comparison

. 2024 Mar 11 ; 25 (3) : 1749-1758. [epub] 20240118

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38236997

The antitumor immunity can be enhanced through the synchronized codelivery of antigens and immunostimulatory adjuvants to antigen-presenting cells, particularly dendritic cells (DCs), using nanovaccines (NVs). To study the influence of intracellular vaccine cargo release kinetics on the T cell activating capacities of DCs, we compared stimuli-responsive to nonresponsive polymersome NVs. To do so, we employed "AND gate" multiresponsive (MR) amphiphilic block copolymers that decompose only in response to the combination of chemical cues present in the environment of the intracellular compartments in antigen cross-presenting DCs: low pH and high reactive oxygen species (ROS) levels. After being unmasked by ROS, pH-responsive side chains are exposed and can undergo a charge shift within a relevant pH window of the intracellular compartments in antigen cross-presenting DCs. NVs containing the model antigen Ovalbumin (OVA) and the iNKT cell activating adjuvant α-Galactosylceramide (α-Galcer) were fabricated using microfluidics self-assembly. The MR NVs outperformed the nonresponsive NV in vitro, inducing enhanced classical- and cross-presentation of the OVA by DCs, effectively activating CD8+, CD4+ T cells, and iNKT cells. Interestingly, in vivo, the nonresponsive NVs outperformed the responsive vaccines. These differences in polymersome vaccine performance are likely linked to the kinetics of cargo release, highlighting the crucial chemical requirements for successful cancer nanovaccines.

Zobrazit více v PubMed

Waldman A. D.; Fritz J. M.; Lenardo M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol 2020, 20, 651–668. 10.1038/s41577-020-0306-5. PubMed DOI PMC

Lin M. J.; Svensson-Arvelund J.; Lubitz G. S.; Marabelle A.; Melero I.; Brown B. D.; Brody J. D. Cancer vaccines: The next immunotherapy frontier. Nat. Cancer 2022, 3, 911–926. 10.1038/s43018-022-00418-6. PubMed DOI

Roth G. A.; Picece V. C. T. M.; Ou B. S.; Luo W.; Pulendran B.; Appel E. A. Designing spatial and temporal control of vaccine responses. Nat. Rev. Mater. 2022, 7, 174–195. 10.1038/s41578-021-00372-2. PubMed DOI PMC

Silva A. L.; Soema P. C.; Slütter B.; Ossendorp F.; Jiskoot W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum. Vaccines Immunother. 2016, 12, 1056–1069. 10.1080/21645515.2015.1117714. PubMed DOI PMC

Da Silva C. G.; Camps M. G. M.; Li T. M. W. Y.; Chan A. B.; Ossendorp F.; Cruz L. J. Co-delivery of immunomodulators in biodegradable nanoparticles improves therapeutic efficacy of cancer vaccines. Biomaterials 2019, 220, 119417.10.1016/j.biomaterials.2019.119417. PubMed DOI

Yan X.; Zhou M.; Yu S.; Jin Z.; Zhao K. An overview of biodegradable nanomaterials and applications in vaccines. Vaccine 2020, 38, 1096–1104. 10.1016/j.vaccine.2019.11.031. PubMed DOI

Dölen Y.; Gileadi U.; Chen J.-L.; Valente M.; Creemers J. H. A.; Van Dinther E. A. W.; van Riessen N. K.; Jäger E.; Hruby M.; Cerundolo V.; Diken M.; Figdor C. G.; de Vries I. J. M. PLGA Nanoparticles Co-encapsulating NY-ESO-1 Peptides and IMM60 Induce Robust CD8 and CD4 T Cell and B Cell Responses. Front Immunol 2021, 12, 641703.10.3389/fimmu.2021.641703. PubMed DOI PMC

Dölen Y.; Kreutz M.; Gileadi U.; Tel J.; Vasaturo A.; van Dinther E. A. W.; van Hout-Kuijer M. A.; Cerundolo V.; Figdor C. G. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated anti-tumor immune responses. OncoImmunology 2016, 5, e106849310.1080/2162402X.2015.1068493. PubMed DOI PMC

Painter G. V.; Burn O. K.; Hermans I. F. Mol. Immunol 2021, 130, 1–6. 10.1016/j.molimm.2020.12.010. PubMed DOI

Cruz F. M.; Colbert J. D.; Merino E.; Kriegsman B. A.; Rock K. L. The Biology and Underlying Mechanisms of Cross-Presentation of Exogenous Antigens on MHC-I Molecules. Annu. Rev. Immunol. 2017, 35, 149–176. 10.1146/annurev-immunol-041015-055254. PubMed DOI PMC

Roche P.; Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol 2015, 15, 203–216. 10.1038/nri3818. PubMed DOI PMC

Ostroumov D.; Fekete-Drimusz N.; Saborowski M.; Kühnel F.; Woller N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell. Mol. Life Sci. 2018, 75, 689–713. 10.1007/s00018-017-2686-7. PubMed DOI PMC

Scott E.a A.; Stano A.; Gillard M.; Maio-Lu A. C.; Swartz M. A.; Hubbel J. A. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials 2012, 33, 6211–6219. 10.1016/j.biomaterials.2012.04.060. PubMed DOI

Liang X.; Duan J.; Li X.; Zhu X.; Chen Y.; Wang X.; Sun H.; Kong D.; Li C.; Yang J. Improved vaccine-induced immune responses via a ROS-triggered nanoparticle-based antigen delivery system. Nanoscale 2018, 10, 9489–9503. 10.1039/C8NR00355F. PubMed DOI

Luo M.; Wang H.; Wang z; Cai H.; Lu Z.; Li Y.; Du M.; Huang G.; Wang C.; Chen X.; Porembka M. R.; Lea J.; Frankel A. E.; Fu Y.-X.; Chen Z. J.; Gao J. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 648–654. 10.1038/nnano.2017.52. PubMed DOI PMC

Oberkampf M.; Guillerey C.; Mouriès J.; Rosenbaum P.; Fayolle C.; Bobard A.; Savina A.; Ogier-Denis E.; Enninga J.; Amigorena S.; Leclerc C.; Dadaglio G. Mitochondrial reactive oxygen species regulate the induction of CD8+ T cells by plasmacytoid dendritic cells. Nat. Commun. 2018, 9, 2241.10.1038/s41467-018-04686-8. PubMed DOI PMC

Dingjan I.; Verboogen D. R.; Paardekooper L. M.; Revelo N. H.; Sittig S. P.; Visser L. J.; von Mollard G. F.; Henriet S. S.; Figdor C. G.; Ter Beest M.; van den Bogaart G. Lipid peroxidation causes endosomal antigen release for cross-presentation. Sci. Rep. 2016, 6, 22064.10.1038/srep22064. PubMed DOI PMC

Lee D.; Huntoon K.; Lux J.; Kim B. Y. S.; Jiang W. Engineering nanomaterial physical characteristics for cancer immunotherapy. Nat. Rev. Bioeng 2023, 1, 499–517. 10.1038/s44222-023-00047-3. DOI

Tanner P.; Baumann P.; Enea R.; Onaca O.; Palivan C.; Meier W. Polymeric Vesicles: From Drug Carriers to Nanoreactors and Artificial Organelles. Acc. Chem. Res. 2011, 44, 1039–1049. 10.1021/ar200036k. PubMed DOI

Scheerstra J. F.; Wauters A. C.; Tel J.; Abdelmohsen L. K. E. A.; van Hest J. C. M. Polymersomes as a potential platform for cancer immunotherapy. Mater. Today Adv. 2022, 13, 100203.10.1016/j.mtadv.2021.100203. DOI

Oliveira H. D.; Thevenot J.; Lecommandoux S. Smart polymersomes for therapy and diagnosis: Fast progress toward multifunctional biomimetic nanomedicines. .. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2012, 4, 525–546. 10.1002/wnan.1183. PubMed DOI

Rideau E.; Dimova R.; Schwille P.; Wurm F. R.; Landfester K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev. 2018, 47, 8572–8610. 10.1039/C8CS00162F. PubMed DOI

Jäger E.; Humajová J.; Dölen Y.; Kučka J.; Jäger A.; Konefał R.; Pankrác J.; Pavlova E.; Heizer T.; Šefc L.; Hrubý M.; Figdor C. G.; Verdoes M. Enhanced Antitumor Efficacy through an ″AND gate″ Reactive Oxygen-Species-Dependent pH-Responsive Nanomedicine Approach. Adv. Healthc Mater. 2021, 10, e210030410.1002/adhm.202100304. PubMed DOI

Albuquerque L. J. C.; Sincari V.; Jäger A.; Konefał R.; Pánek J.; Černoch P.; Pavlova E.; Štěpánek P.; Giacomelli F. C.; Jäger E. Microfluidic-assisted engineering of quasi-monodisperse pH-responsive polymersomes toward advanced platforms for the intracellular delivery of hydrophilic therapeutics. Langmuir 2019, 35, 8363–8372. 10.1021/acs.langmuir.9b01009. PubMed DOI

Jäger E.; Sincari V.; Albuquerque L. J. C.; Jäger A.; Humajova J.; Kucka J.; Pankrac J.; Paral P.; Heizer T.; Janouškova O.; Konefal R.; Pavlova E.; Sedlacek O.; Giacomelli F. C.; Pouckova P.; Sefc L.; Stepanek P.; Hruby M. Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry. Biomacromolecules 2020, 21, 1437–1449. 10.1021/acs.biomac.9b01748. PubMed DOI

Operti M. C.; Bernhardt A.; Pots J.; Sincarti V.; Jäger E.; Grimm S.; Engel A.; Benedikt A.; Hrubý M.; De Vries I. J. M.; Figdor C. G.; Tagit O. Translating the Manufacture of Immunotherapeutic PLGA Nanoparticles from Lab to Industrial Scale: Process Transfer and In Vitro Testing. Pharmaceutics 2022, 14, 1690.10.3390/pharmaceutics14081690. PubMed DOI PMC

Qiu L.; Valente M.; Dölen Y.; Jäger E.; Ter Beest M.; Zheng L.; Figdor C. G.; Verdoes M. Endolysosomal-Escape Nanovaccines through Adjuvant-Induced Tumor Antigen Assembly for Enhanced Effector CD8+ T Cell Activation. Small 2018, 14, e170353910.1002/smll.201703539. PubMed DOI

Valente M.; Baey C.; Louche P.; Dutertre C.-A.; Vimeux L.; Marañón C.; Hosmalin A.; Feuillet V. Apoptotic cell capture by DCs induces unexpectedly robust autologous CD4+ T-cell responses. Eur. J. Immunol. 2014, 44, 2274–2286. 10.1002/eji.201344191. PubMed DOI

Cruz L. J.; Tacken P. J.; Eich C.; Rueda F.; Torensma R.; Figdor C. G. Controlled release of antigen and Toll-like receptor ligands from PLGA nanoparticles enhances immunogenicity. Nanomedicine 2017, 12, 491–510. 10.2217/nnm-2016-0295. PubMed DOI

Hoshyar N.; Gray S.; Han H.; Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673–692. 10.2217/nnm.16.5. PubMed DOI PMC

He C.; Hu Y.; Yin L.; Tang C.; Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657–3666. 10.1016/j.biomaterials.2010.01.065. PubMed DOI

Creemers J. H. A.; Pawlitzky I.; Grosios K.; Gileadi U.; Middleton M. R.; Gerritsen W. R.; Mehra N.; Rivoltini L.; Walters I.; Figdor C. G.; Ottevanger P. B.; de Vries I. J. M. Assessing the safety, tolerability and efficacy of PLGA-based immunomodulatory nanoparticles in patients with advanced NY-ESO-1-positive cancers: a first-in-human phase I open-label dose-escalation study protocol. BMJ. Open 2021, 11, e05072510.1136/bmjopen-2021-050725. PubMed DOI PMC

Albuquerque L. J. C.; Sincari V.; Jäger A.; Kucka J.; Humajova J.; Pankrac J.; Paral P.; Heizer T.; Janouškova O.; Davidovich I.; Talmon Y.; Pouckova P.; Štěpánek P.; Sefc L.; Hruby M.; Giacomelli F. C.; Jäger E. pH-responsive polymersome-mediated delivery of doxorubicin into tumor sites enhances the therapeutic efficacy and reduces cardiotoxic effects. J. Controlled Release 2021, 332, 529–538. 10.1016/j.jconrel.2021.03.013. PubMed DOI

Dölen Y.; Valente M.; Tagit O.; Jäger E.; Van Dinther E. W. A.; van Riessen N. K.; Hruby M.; Gileadi U.; Cerundolo V.; Figdor C. G. Nanovaccine administration route is critical to obtain pertinent iNKt cell help for robust anti-tumor T and B cell responses. Oncoimmunology 2020, 9, e173881310.1080/2162402X.2020.1738813. PubMed DOI PMC

Zhao Z.; Hu Y.; Harmon T.; Pental P.; Ehrich M.; Zhang C. Effect of Adjuvant Release Rate on the Immunogenicity of Nanoparticle-Based Vaccines: A Case Study with a Nanoparticle-Based Nicotine Vaccine. Mol. Pharmaceutics 2019, 16 (6), 2766–2775. 10.1021/acs.molpharmaceut.9b00279. PubMed DOI PMC

Demento S. L.; Cui W.; Criscione J. M.; Stern E.; Tulipan J.; Kaech S. M.; Fahmy T. M. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 2012, 33, 4957–4964. 10.1016/j.biomaterials.2012.03.041. PubMed DOI PMC

Tacken P. J.; de Vries I. J. M.; Torensma R.; Figdor C. G. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol. 2007, 7, 790–802. 10.1038/nri2173. PubMed DOI

Le Gall C. M.; Weiden J.; Eggermont L. J.; Figdor C. G. Dendritic cells in cancer immunotherapy. Nat. Mater. 2018, 17, 474–475. 10.1038/s41563-018-0093-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...