• This record comes from PubMed

Photogrammetric Co-Processing of Thermal Infrared Images and RGB Images

. 2022 Feb 20 ; 22 (4) : . [epub] 20220220

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
SGS21/054/OHK1/1T/11 Grant Agency of the Czech Technical University in Prague

In some applications of thermography, spatial orientation of the thermal infrared information can be desirable. By the photogrammetric processing of thermal infrared (TIR) images, it is possible to create 2D and 3D results augmented by thermal infrared information. On the augmented 2D and 3D results, it is possible to locate thermal occurrences in the coordinate system and to determine their scale, length, area or volume. However, photogrammetric processing of TIR images is difficult due to negative factors which are caused by the natural character of TIR images. Among the negative factors are the lower resolution of TIR images compared to RGB images and lack of visible features on the TIR images. To eliminate these negative factors, two methods of photogrammetric co-processing of TIR and RGB images were designed. Both methods require a fixed system of TIR and RGB cameras and for each TIR image a corresponding RGB image must be captured. One of the methods was termed sharpening and the result of this method is mainly an augmented orthophoto, and an augmented texture of the 3D model. The second method was termed reprojection and the result of this method is a point cloud augmented by thermal infrared information. The details of the designed methods, as well as the experiments related to the methods, are presented in this article.

See more in PubMed

Usamentiaga R., Venegas P., Guerediaga J., Vega L., Molleda J., Bulnes F.G. Infrared Thermography for Temperature Measurement and Non-Destructive Testing. Sensors. 2014;14:12305–12348. doi: 10.3390/s140712305. PubMed DOI PMC

Gade R., Moeslund T.B. Thermal cameras and applications: A survey. Mach. Vis. Appl. 2014;25:245–262. doi: 10.1007/s00138-013-0570-5. DOI

Kylili A., Fokaides P.A., Christou P., Kalogirou S.A. Infrared thermography (IRT) applications for building diagnostics: A review. Appl. Energy. 2014;134:531–549. doi: 10.1016/j.apenergy.2014.08.005. DOI

Adamopoulos E., Volinia M., Girotto M., Rinaudo F. Three-Dimensional Thermal Mapping from IRT Images for Rapid Architectural Heritage NDT. Buildings. 2020;10:187. doi: 10.3390/buildings10100187. DOI

Hoegner L., Tuttas S., Xu Y., Eder K., Stilla U. Evaluation of methods for coregistration and fusion of rpas-based 3d point clouds and thermal infrared images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016;XLI-B3:241–246. doi: 10.5194/isprs-archives-XLI-B3-241-2016. DOI

Javadnejad F., Gillins D.T., Parrish C.E., Slocum R.K. A photogrammetric approach to fusing natural colour and thermal infrared UAS imagery in 3D point cloud generation. Int. J. Remote Sens. 2020;41/1:211–237. doi: 10.1080/01431161.2019.1641241. DOI

Sledz A., Unger J., Heipke C. Thermal IR imaging: Image quality and orthophoto generation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018;XLII-1:413–420. doi: 10.5194/isprs-archives-XLII-1-413-2018. DOI

Wakeford Z.E., Chmielewska M., Hole M.J., Howell J.A., Jerram D.A. Combining thermal imaging with photogrammetry of an active volcano using UAV: An example from Stromboli, Italy. Photogramm. Rec. 2019;34:445–466. doi: 10.1111/phor.12301. DOI

Balaras C.A., Argiriou A.A. Infrared thermography for building diagnostics. Energy Build. 2002;34:171–183. doi: 10.1016/S0378-7788(01)00105-0. DOI

Lehmann B., Ghazi Wakili K., Frank T., Vera Collado B., Tanner C. Effects of individual climatic parameters on the infrared thermography of buildings. Appl. Energy. 2013;110:29–43. doi: 10.1016/j.apenergy.2013.03.066. DOI

Adán A., Pérez V., Vivancos J.-L., Aparicio-Fernández C., Prieto S.A. Proposing 3D Thermal Technology for Heritage Building Energy Monitoring. Remote Sens. 2021;13:1537. doi: 10.3390/rs13081537. DOI

Hoegner L., Stilla U. Building facade object detection from terrestrial thermal infrared image sequences combining different views. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015;II-3/W4:55–62. doi: 10.5194/isprsannals-II-3-W4-55-2015. DOI

Brooke C. Thermal Imaging for the Archaeological Investigation of Historic Buildings. Remote Sens. 2018;10:1401. doi: 10.3390/rs10091401. DOI

Denio H. Aerial solar thermography and condition monitoring of photovoltaic systems; Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference; Austin, TX, USA. 3–8 June 2012; pp. 613–618.

Vadivambal R., Jayas D.S. Applications of Thermal Imaging in Agriculture and Food Industry—A Review. Food Bioprocess Technol. 2011;4:186–199. doi: 10.1007/s11947-010-0333-5. DOI

Li J., Gong W., Li W., Liu W. Robust pedestrian detection in thermal infrared imagery using the wavelet transform. Infrared Phys. Technol. 2010;53:267–273. doi: 10.1016/j.infrared.2010.03.005. DOI

Speakman J.R., Ward S. Infrared thermography: Principles and applications. Zoology-Jena. 1998;101:224–232.

ElMasry G., ElGamal R., Mandour N., Gou P., Al-Rejaie S., Belin E., Rousseau D. Emerging thermal imaging techniques for seed quality evaluation: Principles and applications. Food Res. Int. 2020;131:109025. doi: 10.1016/j.foodres.2020.109025. PubMed DOI

Costa J.M., Grant O.M., Chaves M.M. Thermography to explore plant-environment interactions. J. Exp. Bot. 2013;64:3937–3949. doi: 10.1093/jxb/ert029. PubMed DOI

Domazetović F., Šiljeg A., Marić I., Faričić J., Vassilakis E., Panđa L. Automated Coastline Extraction Using the Very High Resolution WorldView (WV) Satellite Imagery and Developed Coastline Extraction Tool (CET) Appl. Sci. 2021;11:9482. doi: 10.3390/app11209482. DOI

Lahiri B.B., Bagavathiappan S., Jayakumar T., Philip J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 2012;55:221–235. doi: 10.1016/j.infrared.2012.03.007. PubMed DOI PMC

Lewis A., Hilley G.E., Lewicki J.L. Integrated thermal infrared imaging and structure-from-motion photogrammetry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA, USA. J. Volcanol. Geotherm. Res. 2015;303:16–24. doi: 10.1016/j.jvolgeores.2015.07.025. DOI

Poloprutský Z. Parametric modelling for HBIM: Design of window library for rural building. Civ. Eng. J. 2019;4:620–630. doi: 10.14311/CEJ.2019.04.0052. DOI

Dlesk A., Vach K. Point Cloud Generation of a Building from Close Range Thermal Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019;XLII-5/W2:29–33. doi: 10.5194/isprs-archives-XLII-5-W2-29-2019. DOI

Scaioni M., Rosina E., L’Erario A., Díaz-Vilariño L. Integration of infrared thermography and photogrammetric surveying of built landscape. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017;XLII-5/W1:153–160.

Maset E., Fusiello A., Crosilla F., Toldo R., Zorzetto D. Photogrammetric 3D building reconstruction from thermal images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017;4:25–32. doi: 10.5194/isprs-annals-IV-2-W3-25-2017. DOI

Dlesk A., Vach K., Holubec P. Usage of photogrammetric processing of thermal images for civil engineers. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018;XLII-5:99–103. doi: 10.5194/isprs-archives-XLII-5-99-2018. DOI

Dlesk A., Vach K., Pavelka K. Transformations in the Photogrammetric Co-Processing of Thermal Infrared Images and RGB Images. Sensors. 2021;21:5061. doi: 10.3390/s21155061. PubMed DOI PMC

Weber I., Jenal A., Kneer C., Bongartz J. PANTIR-a dual camera setup for precise georeferencing and mosaicing of thermal aerial images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015;XL-3/W2:269–272. doi: 10.5194/isprsarchives-XL-3-W2-269-2015. DOI

Kadlec K. Teoretické základy bezdotykového měření teploty (část 1) Automa. 2014;2:13–15.

Kadlec K. Teoretické základy bezdotykového měření teploty (část 2) Automa. 2014;4:24–26.

Fokaides P.A., Kalogirou S.A. Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes. Appl. Energy. 2011;88:4358–4365. doi: 10.1016/j.apenergy.2011.05.014. DOI

Optris—Basic Principles of Non-Contact Temperature Measurement. [(accessed on 4 November 2021)]. Available online: https://www.optris.cz/tl_files/pdf/Downloads/Zubehoer/IR%20Basics.pdf.

Edelman G.J., Hoveling R.J.M., Roos M., Leeuwen T.G., Aalders M.C.G. Infrared Imaging of the Crime Scene: Possibilities and Pitfalls. J. Forensic Sci. 2013;58:1156–1162. doi: 10.1111/1556-4029.12225. PubMed DOI

Elßner M. Vacuum qualitz evaluation for uncooled micro bolometer thermal imager sensors. Microelectron. Reliab. 2014;54:1758–1763. doi: 10.1016/j.microrel.2014.07.094. DOI

Luhmann T., Piechel J., Roelfs T. Geometric calibration of thermographic cameras. Therm. Infrared Remote Sens. Remote Sens. Digit. Image Processing. 2013;17:27–42.

User’s Manual FLIR Exx Series. [(accessed on 26 April 2021)]. Available online: https://www.flir.com/globalassets/imported-assets/document/flir-exx-series-user-manual.pdf.

Agisoft Metashape User Manual. [(accessed on 4 November 2021)]. Available online: https://www.agisoft.com/pdf/metashape-pro_1_5_en.pdf.

Cloud Compare [GPL Software] [(accessed on 3 November 2020)]. Available online: http://www.cloudcompare.org/

QGIS Development Team, QGIS Geographic Information System Open Source Geospatial Foundation. [(accessed on 4 November 2021)]. Available online: https://qgis.org/en/site/

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...