Photogrammetric Co-Processing of Thermal Infrared Images and RGB Images
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SGS21/054/OHK1/1T/11
Grant Agency of the Czech Technical University in Prague
PubMed
35214557
PubMed Central
PMC8876619
DOI
10.3390/s22041655
PII: s22041655
Knihovny.cz E-resources
- Keywords
- augmented orthophoto, augmented point cloud, close-range photogrammetry, photogrammetry, thermal infrared image, thermography,
- MeSH
- Photogrammetry * MeSH
- Thermography * methods MeSH
- Publication type
- Journal Article MeSH
In some applications of thermography, spatial orientation of the thermal infrared information can be desirable. By the photogrammetric processing of thermal infrared (TIR) images, it is possible to create 2D and 3D results augmented by thermal infrared information. On the augmented 2D and 3D results, it is possible to locate thermal occurrences in the coordinate system and to determine their scale, length, area or volume. However, photogrammetric processing of TIR images is difficult due to negative factors which are caused by the natural character of TIR images. Among the negative factors are the lower resolution of TIR images compared to RGB images and lack of visible features on the TIR images. To eliminate these negative factors, two methods of photogrammetric co-processing of TIR and RGB images were designed. Both methods require a fixed system of TIR and RGB cameras and for each TIR image a corresponding RGB image must be captured. One of the methods was termed sharpening and the result of this method is mainly an augmented orthophoto, and an augmented texture of the 3D model. The second method was termed reprojection and the result of this method is a point cloud augmented by thermal infrared information. The details of the designed methods, as well as the experiments related to the methods, are presented in this article.
See more in PubMed
Usamentiaga R., Venegas P., Guerediaga J., Vega L., Molleda J., Bulnes F.G. Infrared Thermography for Temperature Measurement and Non-Destructive Testing. Sensors. 2014;14:12305–12348. doi: 10.3390/s140712305. PubMed DOI PMC
Gade R., Moeslund T.B. Thermal cameras and applications: A survey. Mach. Vis. Appl. 2014;25:245–262. doi: 10.1007/s00138-013-0570-5. DOI
Kylili A., Fokaides P.A., Christou P., Kalogirou S.A. Infrared thermography (IRT) applications for building diagnostics: A review. Appl. Energy. 2014;134:531–549. doi: 10.1016/j.apenergy.2014.08.005. DOI
Adamopoulos E., Volinia M., Girotto M., Rinaudo F. Three-Dimensional Thermal Mapping from IRT Images for Rapid Architectural Heritage NDT. Buildings. 2020;10:187. doi: 10.3390/buildings10100187. DOI
Hoegner L., Tuttas S., Xu Y., Eder K., Stilla U. Evaluation of methods for coregistration and fusion of rpas-based 3d point clouds and thermal infrared images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016;XLI-B3:241–246. doi: 10.5194/isprs-archives-XLI-B3-241-2016. DOI
Javadnejad F., Gillins D.T., Parrish C.E., Slocum R.K. A photogrammetric approach to fusing natural colour and thermal infrared UAS imagery in 3D point cloud generation. Int. J. Remote Sens. 2020;41/1:211–237. doi: 10.1080/01431161.2019.1641241. DOI
Sledz A., Unger J., Heipke C. Thermal IR imaging: Image quality and orthophoto generation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018;XLII-1:413–420. doi: 10.5194/isprs-archives-XLII-1-413-2018. DOI
Wakeford Z.E., Chmielewska M., Hole M.J., Howell J.A., Jerram D.A. Combining thermal imaging with photogrammetry of an active volcano using UAV: An example from Stromboli, Italy. Photogramm. Rec. 2019;34:445–466. doi: 10.1111/phor.12301. DOI
Balaras C.A., Argiriou A.A. Infrared thermography for building diagnostics. Energy Build. 2002;34:171–183. doi: 10.1016/S0378-7788(01)00105-0. DOI
Lehmann B., Ghazi Wakili K., Frank T., Vera Collado B., Tanner C. Effects of individual climatic parameters on the infrared thermography of buildings. Appl. Energy. 2013;110:29–43. doi: 10.1016/j.apenergy.2013.03.066. DOI
Adán A., Pérez V., Vivancos J.-L., Aparicio-Fernández C., Prieto S.A. Proposing 3D Thermal Technology for Heritage Building Energy Monitoring. Remote Sens. 2021;13:1537. doi: 10.3390/rs13081537. DOI
Hoegner L., Stilla U. Building facade object detection from terrestrial thermal infrared image sequences combining different views. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015;II-3/W4:55–62. doi: 10.5194/isprsannals-II-3-W4-55-2015. DOI
Brooke C. Thermal Imaging for the Archaeological Investigation of Historic Buildings. Remote Sens. 2018;10:1401. doi: 10.3390/rs10091401. DOI
Denio H. Aerial solar thermography and condition monitoring of photovoltaic systems; Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference; Austin, TX, USA. 3–8 June 2012; pp. 613–618.
Vadivambal R., Jayas D.S. Applications of Thermal Imaging in Agriculture and Food Industry—A Review. Food Bioprocess Technol. 2011;4:186–199. doi: 10.1007/s11947-010-0333-5. DOI
Li J., Gong W., Li W., Liu W. Robust pedestrian detection in thermal infrared imagery using the wavelet transform. Infrared Phys. Technol. 2010;53:267–273. doi: 10.1016/j.infrared.2010.03.005. DOI
Speakman J.R., Ward S. Infrared thermography: Principles and applications. Zoology-Jena. 1998;101:224–232.
ElMasry G., ElGamal R., Mandour N., Gou P., Al-Rejaie S., Belin E., Rousseau D. Emerging thermal imaging techniques for seed quality evaluation: Principles and applications. Food Res. Int. 2020;131:109025. doi: 10.1016/j.foodres.2020.109025. PubMed DOI
Costa J.M., Grant O.M., Chaves M.M. Thermography to explore plant-environment interactions. J. Exp. Bot. 2013;64:3937–3949. doi: 10.1093/jxb/ert029. PubMed DOI
Domazetović F., Šiljeg A., Marić I., Faričić J., Vassilakis E., Panđa L. Automated Coastline Extraction Using the Very High Resolution WorldView (WV) Satellite Imagery and Developed Coastline Extraction Tool (CET) Appl. Sci. 2021;11:9482. doi: 10.3390/app11209482. DOI
Lahiri B.B., Bagavathiappan S., Jayakumar T., Philip J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 2012;55:221–235. doi: 10.1016/j.infrared.2012.03.007. PubMed DOI PMC
Lewis A., Hilley G.E., Lewicki J.L. Integrated thermal infrared imaging and structure-from-motion photogrammetry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA, USA. J. Volcanol. Geotherm. Res. 2015;303:16–24. doi: 10.1016/j.jvolgeores.2015.07.025. DOI
Poloprutský Z. Parametric modelling for HBIM: Design of window library for rural building. Civ. Eng. J. 2019;4:620–630. doi: 10.14311/CEJ.2019.04.0052. DOI
Dlesk A., Vach K. Point Cloud Generation of a Building from Close Range Thermal Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019;XLII-5/W2:29–33. doi: 10.5194/isprs-archives-XLII-5-W2-29-2019. DOI
Scaioni M., Rosina E., L’Erario A., Díaz-Vilariño L. Integration of infrared thermography and photogrammetric surveying of built landscape. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017;XLII-5/W1:153–160.
Maset E., Fusiello A., Crosilla F., Toldo R., Zorzetto D. Photogrammetric 3D building reconstruction from thermal images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017;4:25–32. doi: 10.5194/isprs-annals-IV-2-W3-25-2017. DOI
Dlesk A., Vach K., Holubec P. Usage of photogrammetric processing of thermal images for civil engineers. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018;XLII-5:99–103. doi: 10.5194/isprs-archives-XLII-5-99-2018. DOI
Dlesk A., Vach K., Pavelka K. Transformations in the Photogrammetric Co-Processing of Thermal Infrared Images and RGB Images. Sensors. 2021;21:5061. doi: 10.3390/s21155061. PubMed DOI PMC
Weber I., Jenal A., Kneer C., Bongartz J. PANTIR-a dual camera setup for precise georeferencing and mosaicing of thermal aerial images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015;XL-3/W2:269–272. doi: 10.5194/isprsarchives-XL-3-W2-269-2015. DOI
Kadlec K. Teoretické základy bezdotykového měření teploty (část 1) Automa. 2014;2:13–15.
Kadlec K. Teoretické základy bezdotykového měření teploty (část 2) Automa. 2014;4:24–26.
Fokaides P.A., Kalogirou S.A. Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes. Appl. Energy. 2011;88:4358–4365. doi: 10.1016/j.apenergy.2011.05.014. DOI
Optris—Basic Principles of Non-Contact Temperature Measurement. [(accessed on 4 November 2021)]. Available online: https://www.optris.cz/tl_files/pdf/Downloads/Zubehoer/IR%20Basics.pdf.
Edelman G.J., Hoveling R.J.M., Roos M., Leeuwen T.G., Aalders M.C.G. Infrared Imaging of the Crime Scene: Possibilities and Pitfalls. J. Forensic Sci. 2013;58:1156–1162. doi: 10.1111/1556-4029.12225. PubMed DOI
Elßner M. Vacuum qualitz evaluation for uncooled micro bolometer thermal imager sensors. Microelectron. Reliab. 2014;54:1758–1763. doi: 10.1016/j.microrel.2014.07.094. DOI
Luhmann T., Piechel J., Roelfs T. Geometric calibration of thermographic cameras. Therm. Infrared Remote Sens. Remote Sens. Digit. Image Processing. 2013;17:27–42.
User’s Manual FLIR Exx Series. [(accessed on 26 April 2021)]. Available online: https://www.flir.com/globalassets/imported-assets/document/flir-exx-series-user-manual.pdf.
Agisoft Metashape User Manual. [(accessed on 4 November 2021)]. Available online: https://www.agisoft.com/pdf/metashape-pro_1_5_en.pdf.
Cloud Compare [GPL Software] [(accessed on 3 November 2020)]. Available online: http://www.cloudcompare.org/
QGIS Development Team, QGIS Geographic Information System Open Source Geospatial Foundation. [(accessed on 4 November 2021)]. Available online: https://qgis.org/en/site/