Biodeterioration of Compost-Pretreated Polyvinyl Chloride Films by Microorganisms Isolated From Weathered Plastics

. 2022 ; 10 () : 832413. [epub] 20220210

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35223795

Polyvinyl chloride (PVC) is a petroleum-based plastic used in various applications, polluting the environment because of its recalcitrance, large content of additives, and the presence of halogen. In our case study, a new, two-stage biodegradation technology that combined composting process used for PVC pretreatment with a subsequent PVC attack by newly-isolated fungal and bacterial strains under SSF conditions was used for biodegradation of commercial PVC films. The novelty consisted in a combined effect of the two biodegradation processes and the use for augmentation of microbial strains isolated from plastic-polluted environments. First, the ability of the newly-isolated strains to deteriorate PVC was tested in individual, liquid-medium- and SSF cultures. Higher mass-reductions of PVC films were obtained in the former cultures, probably due to a better mass transfer in liquid phase. Using the two-stage biodegradation technology the highest cumulative mass-reductions of 29.3 and 33.2% of PVC films were obtained after 110 days with Trichoderma hamatum and Bacillus amyloliquefaciens applied in the second stage in the SSF culture, respectively. However, FTIR analysis showed that the mass-reductions obtained represented removal of significant amounts of additives but the PVC polymer chain was not degraded.

Zobrazit více v PubMed

Ahuactzin-Pérez M., Tlécuitl-Beristain S., García-Dávila J., Santacruz-Juárez E., González-Pérez M., Gutiérrez-Ruíz M. C., et al. (2018). Kinetics and Pathway of Biodegradation of Dibutyl Phthalate by Pleurotus Ostreatus . Fungal Biol. 122, 991–997. 10.1016/j.funbio.2018.07.001 PubMed DOI

Al-Saleh I., Al-Rajudi T., Al-Qudaihi G., Manogaran P. (2017). Evaluating the Potential Genotoxicity of Phthalates Esters (PAEs) in Perfumes Using In Vitro Assays. Environ. Sci. Pollut. Res. 24, 23903–23914. 10.1007/s11356-017-9978-1 PubMed DOI

Ames B. N., Mccann J., Yamasaki E. (1975). Methods for Detecting Carcinogens and Mutagens with the Salmonella/mammalian-microsome Mutagenicity Test. Mutat. Research/Environmental Mutagenesis Relat. Subjects 31, 347–363. 10.1016/0165-1161(75)90046-1 PubMed DOI

Amir S., Hafidi M., Merlina G., Hamdi H., Jouraiphy A., El Gharous M., et al. (2005). Fate of Phthalic Acid Esters During Composting of Both Lagooning and Activated Sludges. Process Biochem. 40, 2183–2190. 10.1016/j.procbio.2004.08.012 DOI

Anunciado M. B., Hayes D. G., Astner A. F., Wadsworth L. C., Cowan-Banker C. D., Gonzalez J. E. L. y., et al. (2021). Effect of Environmental Weathering on Biodegradation of Biodegradable Plastic Mulch Films Under Ambient Soil and Composting Conditions. J. Polym. Environ. 29, 2916–2931. 10.1007/s10924-021-02088-4 DOI

Arutchelvi J., Sudhakar M., Arkatkar A., Doble M., Bhaduri S., Uppara P. V. (2008). Biodegradation of Polyethylene and Polypropylene. Ind. J. Biotech. 7, 9–22.

Briassoulis D., Babou E., Hiskakis M., Kyrikou I. (2015). Degradation in Soil Behavior of Artificially Aged Polyethylene Films with Pro-oxidants. J. Appl. Polym. Sci. 132. 10.1002/APP.42289 PubMed DOI

Broekhoven L. H., Nestmann E. R. (1991). “Statistical Analysis of the Salmonella Mutagenicity Assay,” in Statistics in Toxicology. Editors Krewski D., Franklin C. (Amsterdam: Gordon and Breach Science Publishers; ), 28–34.

Chang B.-V., Fan S.-N., Tsai Y.-C., Chung Y.-L., Tu P.-X., Yang C.-W. (2018). Removal of Emerging Contaminants Using Spent Mushroom Compost. Sci. Total Environ. 634, 922–933. 10.1016/j.scitotenv.2018.03.366 PubMed DOI

Chang B. V., Lu Y. S., Yuan S. Y., Tsao T. M., Wang M. K. (2009). Biodegradation of Phthalate Esters in Compost-Amended Soil. Chemosphere 74, 873–877. 10.1016/j.chemosphere.2008.10.003 PubMed DOI

Chatterjee S., Dutta T. K. (2008). Complete Degradation of Butyl Benzyl Phthalate by a Defined Bacterial Consortium: Role of Individual Isolates in the Assimilation Pathway. Chemosphere 70, 933–941. 10.1016/j.chemosphere.2007.06.058 PubMed DOI

Chen Z., Zhao W., Xing R., Xie S., Yang X., Cui P., et al. (2020). Enhanced In Situ Biodegradation of Microplastics in Sewage Sludge Using Hyperthermophilic Composting Technology. J. Hazard. Mater. 384, 121271. 10.1016/j.jhazmat.2019.121271 PubMed DOI

Chiellini E., Corti A., D'Antone S., Baciu R. (2006). Oxo-biodegradable Carbon Backbone Polymers - Oxidative Degradation of Polyethylene Under Accelerated Test Conditions. Polym. Degrad. Stab. 91, 2739–2747. 10.1016/j.polymdegradstab.2006.03.022 DOI

Corti A., Muniyasamy S., Vitali M., Imam S. H., Chiellini E. (2010). Oxidation and Biodegradation of Polyethylene Films Containing Pro-oxidant Additives: Synergistic Effects of Sunlight Exposure, Thermal Aging and Fungal Biodegradation. Polym. Degrad. Stab. 95, 1106–1114. 10.1016/j.polymdegradstab.2010.02.018 DOI

Couto S. R., Sanromán M. Á. (2006). Application of Solid-State Fermentation to Food Industry-A Review. J. Food Eng. 76, 291–302. 10.1016/j.jfoodeng.2005.05.022 DOI

Davolos D., Russo F., Canfora L., Malusà E., Tartanus M., Furmanczyk E. M., et al. (2021). A Genomic and Transcriptomic Study on the DDT-Resistant Trichoderma hamatum FBL 587: First Genetic Data into Mycoremediation Strategies for DDT-Polluted Sites. Microorganisms 9, 1680. 10.3390/microorganisms9081680 PubMed DOI PMC

European Commission DGXI.E.3 (2001). European Packaging Waste Management Systems, Final Report, Arbeitsgruppe Umweltstatistik an der Technischen Universität Berlin in association with ACR and Carl. Denmark: Bro A/S Energy & Environment Consultants and Planners.

Folino A., Karageorgiou A., Calabrò P. S., Komilis D. (2020). Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review. Sustainability 12, 6030. 10.3390/su12156030 DOI

Giacomucci L., Raddadi N., Soccio M., Lotti N., Fava F. (2020). Biodegradation of Polyvinyl Chloride Plastic Films by Enriched Anaerobic marine Consortia. Mar. Environ. Res. 158, 104949. 10.1016/j.marenvres.2020.104949 PubMed DOI

Giacomucci L., Raddadi N., Soccio M., Lotti N., Fava F. (2019). Polyvinyl Chloride Biodegradation by Pseudomonas Citronellolis and Bacillus Flexus . New Biotechnol. 52, 35–41. 10.1016/j.nbt.2019.04.005 PubMed DOI

Glas D., Hulsbosch J., Dubois P., Binnemans K., De Vos D. E. (2014). End-of-Life Treatment of Poly(Vinyl Chloride) and Chlorinated Polyethylene by Dehydrochlorination in Ionic Liquids. ChemSusChem 7, 610–617. 10.1002/cssc.201300970 PubMed DOI

Gong H. G., Zhong J. J. (2005). Hydrodynamic Shear Stress Affects Cell Growth and Metabolite Production by Medicinal Mushroom Ganoderma Lucidum . Chin. J. Chem. Eng. 13, 426–428.

Gu J.-D. (2007). Microbial Colonization of Polymeric Materials for Space Applications and Mechanisms of Biodeterioration: A Review. Int. Biodeterioration Biodegradation 59, 170–179. 10.1016/j.ibiod.2006.08.010 DOI

Guo Y., Rene E. R., Wang J., Ma W. (2020). Biodegradation of Polyaromatic Hydrocarbons and the Influence of Environmental Factors During the Co-composting of Sewage Sludge and Green forest Waste. Bioresour. Tech. 297, 122434. 10.1016/j.biortech.2019.122434 PubMed DOI

Iranzo M., Gamón M., Boluda R., Mormeneo S. (2018). Analysis of Pharmaceutical Biodegradation of WWTP Sludge Using Composting and Identification of Certain Microorganisms Involved in the Process. Sci. Total Environ. 640-641, 840–848. 10.1016/j.scitotenv.2018.05.366 PubMed DOI

Kaewlaoyoong A., Cheng C.-Y., Lin C., Chen J.-R., Huang W.-Y., Sriprom P. (2020). White Rot Fungus Pleurotus Pulmonarius Enhanced Bioremediation of Highly PCDD/F-contaminated Field Soil via Solid State Fermentation. Sci. Total Environ. 738, 139670. 10.1016/j.scitotenv.2020.139670 PubMed DOI

Kastner J., Cooper D. G., Marić M., Dodd P., Yargeau V. (2012). Aqueous Leaching of Di-2-ethylhexyl Phthalate and "green" Plasticizers from Poly(vinyl Chloride). Sci. Total Environ. 432, 357–364. 10.1016/j.scitotenv.2012.06.014 PubMed DOI

Khatoon N., Jamal A., Ali M. I. (2019). Lignin Peroxidase Isoenzyme: A Novel Approach to Biodegrade the Toxic Synthetic Polymer Waste. Environ. Tech. 40, 1366–1375. 10.1080/09593330.2017.1422550 PubMed DOI

Kumari A., Chaudhary D. R., Jha B. (2019). Destabilization of Polyethylene and Polyvinylchloride Structure by Marine Bacterial Strain. Environ. Sci. Pollut. Res. 26, 1507–1516. 10.1007/s11356-018-3465-1 PubMed DOI

Liang D.-W., Zhang T., Fang H. H. P., He J. (2008). Phthalates Biodegradation in the Environment. Appl. Microbiol. Biotechnol. 80, 183–198. 10.1007/s00253-008-1548-5 PubMed DOI

Malachová K., Novotný Č., Adamus G., Lotti N., Rybková Z., Soccio M., et al. (2020). Ability of Trichoderma hamatum Isolated from Plastics-Polluted Environments to Attack Petroleum-Based, Synthetic Polymer Films. Processes 8, 467. 10.3390/pr8040467 DOI

Manzur A., Limón-González M., Favela-Torres E. (2004). Biodegradation of Physicochemically Treated LDPE by a Consortium of Filamentous Fungi. J. Appl. Polym. Sci. 92, 265–271. 10.1002/app.13644 DOI

Martínez K. I., González‐Mota R., Soto‐Bernal J. J., Rosales‐Candelas I. (2020). Evaluation by IR Spectroscopy of the Degradation of Different Types of Commercial Polyethylene Exposed to UV Radiation and Domestic Compost in Ambient Conditions. J. Appl. Polym. Sci. 138, 50158. 10.1002/app.50158 DOI

Meng D., Zhai L.-x., Tian Q.-p., Guan Z.-b., Cai Y.-j., Liao X.-r. (2019). Complete Genome Sequence of Bacillus Amyloliquefaciens YP6, a Plant Growth Rhizobacterium Efficiently Degrading a Wide Range of Organophosphorus Pesticides. J. Integr. Agric. 18, 2668–2672. 10.1016/s2095-3119(19)62658-4 DOI

Mersiowsky I., Weller M., Ejlertsson J. (2001). Fate of Plasticised PVC Products under Landfill Conditions: A Laboratory-Scale Landfill Simulation Reactor Study. Water Res. 35, 3063–3070. 10.1016/S0043-1354(01)00027-6 PubMed DOI

Mortelmans K., Zeiger E. (2000). The Ames Salmonella/microsome Mutagenicity Assay. Mutat. Research/Fundamental Mol. Mech. Mutagenesis 455, 29–60. 10.1016/S0027-5107(00)00064-6 PubMed DOI

Mukherjee S., Ghosh M. (2019). Performance Evaluation and Biodegradation Study of Polyvinyl Chloride Films with Castor Oil‐based Plasticizer. J. Am. Oil Chem. Soc. 97, 187–199. 10.1002/aocs.12294 DOI

Novotný Č., Malachová K., Adamus G., Kwiecień M., Lotti N., Soccio M., et al. (2018). Deterioration of Irradiation/high-Temperature Pretreated, Linear Low-Density Polyethylene (LLDPE) by Bacillus Amyloliquefaciens . Int. Biodeterioration Biodegradation 132, 259–267. 10.1016/j.ibiod.2018.04.014 DOI

Novotný Č., Svobodová K., Erbanová P., Cajthaml T., Kasinath A., Lang E., et al. (2004). Ligninolytic Fungi in Bioremediation: Extracellular Enzyme Production and Degradation Rate. Soil Biol. Biochem. 36, 1545–1551. 10.1016/j.soilbio.2004.07.019 DOI

Nowak B., Pająk J., Drozd-Bratkowicz M., Rymarz G. (2011). Microorganisms Participating in the Biodegradation of Modified Polyethylene Films in Different Soils Under Laboratory Conditions. Int. Biodeterioration Biodegradation 65, 757–767. 10.1016/j.ibiod.2011.04.007 DOI

Nozhevnikova A. N., Mironov V. V., Botchkova E. A., Litti Y. V., Russkova Y. I. (2019). Composition of a Microbial Community at Different Stages of Composting and the Prospects for Compost Production from Municipal Organic Waste (Review). Appl. Biochem. Microbiol. 55, 199–208. 10.1134/S0003683819030104 DOI

OECD (2020). “Test No. 471: Bacterial Reverse Mutation Test,” in OECD Guidelines for the Testing of Chemicals, Section 4 (Paris: OECD Publishing; ), 1–11. 10.1787/9789264071247-en DOI

OSPARCOM (1997). “Oslo and Paris Conventions for the Prevention of marine Pollution,” in Background Document and Proceeding of the Workshop, Paris, France, September 22, 1992.

Otake Y., Kobayashi T., AsabeMurakami H. N., Murakami N., Ono K. (1995). Biodegradation of Low-Density Polyethylene, Polystyrene, Polyvinyl Chloride, and Urea Formaldehyde Resin Buried under Soil for Over 32 Years. J. Appl. Polym. Sci. 56, 1789–1796. 10.1002/app.1995.070561309 DOI

Pardo-Rodríguez M. L., Zorro-Mateus P. J. P. (2021). Biodegradation of Polyvinyl Chloride by Mucor s.P. And Penicillium s.P. Isolated from Soil. Rev. Investig. Desarro. Innov. 11, 387–400. 10.19053/20278306.v11.n2.2021.12763 DOI

Patil R., Bagde U. S. (2012). Isolation of Polyvinyl Chloride Degrading Bacterial Strains from Environmental Samples Using Enrichment Culture Technique. Afr. J. Biotechnol. 11, 7947–7956. 10.5897/ajb11.3630 DOI

Peixoto J., Silva L. P., Krüger R. H. (2017). Brazilian Cerrado Soil Reveals an Untapped Microbial Potential for Unpretreated Polyethylene Biodegradation. J. Hazard. Mater. 324, 634–644. 10.1016/j.jhazmat.2016.11.037 PubMed DOI

Peng B.-Y., Chen Z., Chen J., Yu H., Zhou X., Criddle C. S., et al. (2020). Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) Larvae. Environ. Int. 145, 106106. 10.1016/j.envint.2020.106106 PubMed DOI

Plastics Europe (2021). Plastics-the Facts 2021. Available at: https://plasticseurope.org/wp-content/uploads/2021/12/Plastics-the-Facts-2021-web-final.pdf (Accessed January 31, 2022).

Quillardet P., Hofnung M. (1985). The SOS Chromotest, a Colorimetric Bacterial Assay for Genotoxins: Procedures. Mutat. Research/Environmental Mutagenesis Relat. Subjects 147, 65–78. 10.1016/0165-1161(85)90020-2 PubMed DOI

Quillardet P., Huisman O., D'Ari R., Hofnung M. (1982). SOS Chromotest, a Direct Assay of Induction of an SOS Function in Escherichia coli K-12 to Measure Genotoxicity. Proc. Natl. Acad. Sci. 79, 5971–5975. 10.1073/pnas.79.19.5971 PubMed DOI PMC

Richardson S., Plewa M., Wagner E., Schoeny R., Demarini D. (2007). Occurrence, Genotoxicity, and Carcinogenicity of Regulated and Emerging Disinfection By-Products in Drinking Water: A Review and Roadmap for Research. Mutat. Research/Reviews Mutat. Res. 636, 178–242. 10.1016/j.mrrev.2007.09.001 PubMed DOI

Rincón-Bedoya E., Velásquez N., Quijano J., Bravo-Linares C. (2013). Mutagenicity and Genotoxicity of Water Treated for Human Consumption Induced by Chlorination By-Products. J. Environ. Health 75, 28–36. Available at: https://www.jstor.org/stable/26329552 . PubMed

Rodríguez-Fernández D. E., Rodríguez-León J. A., de Carvalho J. C., Karp S. G., Sturm W., Parada J. L., et al. (2012). Influence of Airflow Intensity on Phytase Production by Solid-State Fermentation. Bioresour. Tech. 118, 603–606. 10.1016/j.biortech.2012.05.032 PubMed DOI

Ru J., Huo Y., Yang Y. (2020). Microbial Degradation and Valorization of Plastic Wastes. Front. Microbiol. 11, 442. 10.3389/fmicb.2020.00442 PubMed DOI PMC

Sicińska P., Mokra K., Wozniak K., Michałowicz J., Bukowska B. (2021). Genotoxic Risk Assessment and Mechanism of DNA Damage Induced by Phthalates and Their Metabolites in Human Peripheral Blood Mononuclear Cells. Sci. Rep. 11, 1658. 10.1038/s41598-020-79932-5 PubMed DOI PMC

Sivan A., Szanto M., Pavlov V. (2006). Biofilm Development of the Polyethylene-Degrading Bacterium Rhodococcus Ruber . Appl. Microbiol. Biotechnol. 72, 346–352. 10.1007/s00253-005-0259-4 PubMed DOI

Socrates G. (2007). Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 3rd Edn. West Sussex: John Wiley.

Stotzky G., Burns R. G. (1982). “The Soil Environment: Clay-humus-microbe Interactions,” in Experimental Microbial Ecology. Editors Burns R. G., Slater J. H. (Oxford London: Blackwell Scientific Publications; ), 105–133. 10.1016/0038-0717(82)90099-2 DOI

Sudhakar M., Doble M., Murthy P. S., Venkatesan R. (2008). Marine Microbe-Mediated Biodegradation of Low- and High-Density Polyethylenes. Int. Biodeterioration Biodegradation 61, 203–213. 10.1016/j.ibiod.2007.07.011 DOI

Suhrhoff T. J., Scholz-Böttcher B. M. (2016). Qualitative Impact of Salinity, UV Radiation and Turbulence on Leaching of Organic Plastic Additives from Four Common Plastics - A Lab experiment. Mar. Pollut. Bull. 102, 84–94. 10.1016/j.marpolbul.2015.11.054 PubMed DOI

Sun Y., Ren X., Rene E. R., Wang Z., Zhou L., Zhang Z., et al. (2021). The Degradation Performance of Different Microplastics and Their Effect on Microbial Community During Composting Process. Bioresour. Tech. 332, 125133. 10.1016/j.biortech.2021.125133 PubMed DOI

Tang Y.-J., Zhu L.-W., Li H.-M., Li D.-S. (2007). Submerged Culture of Mushrooms in Bioreactors- Challenges, Current State-Of-The-Art, and Future Prospects. Food Tech. Biotech. 45, 221–229.

Thomas L., Larroche C., Pandey A. (2013). Current Developments in Solid-State Fermentation. Biochem. Eng. J. 81, 146–161. 10.1016/j.bej.2013.10.013 DOI

Tran H.-T., Lin C., Bui X.-T., Ngo H.-H., Cheruiyot N. K., Hoang H.-G., et al. (2021). Aerobic Composting Remediation of Petroleum Hydrocarbon-Contaminated Soil. Current and Future Perspectives. Sci. Total Environ. 753, 142250. 10.1016/j.scitotenv.2020.142250 PubMed DOI

Tran H. T., Lin C., Hoang H. G., Nguyen M. T., Kaewlaoyoong A., Cheruiyot N. K., et al. (2020). Biodegradation of Dioxin-Contaminated Soil via Composting: Identification and Phylogenetic Relationship of Bacterial Communities. Environ. Tech. Innovation 19, 101023. 10.1016/j.eti.2020.101023 DOI

Vipotnik Z., Michelin M., Tavares T. (2021). Ligninolytic Enzymes Production During Polycyclic Aromatic Hydrocarbons Degradation: Effect of Soil pH, Soil Amendments and Fungal Co-cultivation. Biodegradation 32, 193–215. 10.1007/s10532-021-09933-2 PubMed DOI

Volke-Sepúlveda T., Saucedo-Castañeda G., Gutiérrez-Rojas M., Manzur A., Favela-Torres E. (2002). Thermally Treated Low Density Polyethylene Biodegradation by Penicillium pinophilumandAspergillus niger. J. Appl. Polym. Sci. 83, 305–314. 10.1002/app.2245 DOI

Wang Y., Fan Y., Gu J.-D. (2004). Dimethyl Phthalate Ester Degradation by Two Planktonic and Immobilized Bacterial Consortia. Int. Biodeterioration Biodegradation 53, 93–101. 10.1016/j.ibiod.2003.10.005 DOI

Webb J. S., Nixon M., Eastwood I. M., Greenhalgh M., Robson G. D., Handley P. S. (2000). Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride. Appl. Environ. Microbiol. 66, 3194–3200. 10.1128/aem.66.8.3194-3200.2000 PubMed DOI PMC

Wen Z.-D., Gao D.-W., Wu W.-M. (2014). Biodegradation and Kinetic Analysis of Phthalates by an Arthrobacter Strain Isolated from Constructed Wetland Soil. Appl. Microbiol. Biotechnol. 98, 4683–4690. 10.1007/s00253-014-5568-z PubMed DOI

Wu W.-M., Criddle C. S. (2021). Characterization of Biodegradation of Plastics in Insect Larvae. Methods Enzymol. 648, 95–120. 10.1016/bs.mie.2020.12.029 PubMed DOI

Yuan L., Cheng J., Chu Q., Ji X., Yuan J., Feng F., et al. (2019). Di-n-butyl Phthalate Degrading Endophytic bacteriumBacillus Amyloliquefaciens subsp.Strain JR20 Isolated from Garlic Chive and its Colonization in a Leafy Vegetable. J. Environ. Sci. Health B 54 (8), 693–701. 10.1080/03601234.2019.1633211 PubMed DOI

Zafra G., Cortés-Espinosa D. V. (2015). Biodegradation of Polycyclic Aromatic Hydrocarbons by Trichoderma Species: A Mini Review. Environ. Sci. Pollut. Res. 22, 19426–19433. 10.1007/s11356-015-5602-4 PubMed DOI

Zeng S., Zhao J., Xia L. (2017). Simultaneous Production of Laccase and Degradation of Bisphenol A with Trametes versicolor Cultivated on Agricultural Wastes. Bioproc. Biosyst Eng 40, 1237–1245. 10.1007/s00449-017-1783-1 PubMed DOI PMC

Zhang J., Zhang C., Zhu Y., Li J., Li X. (2018). Biodegradation of Seven Phthalate Esters by Bacillus Mojavensis B1811. Int. Biodeterioration Biodegradation 132, 200–207. 10.1016/j.ibiod.2018.04.006 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...