Relativistic Spin-Orbit Electronegativity and the Chemical Bond Between a Heavy Atom and a Light Atom

. 2022 Apr 27 ; 28 (24) : e202200277. [epub] 20220324

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35229922

Grantová podpora
21-06991S Grantová Agentura České Republiky
LM2018140 Ministerstvo Školství, Mládeže a Tělovýchovy
2/0135/21 Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
APVV-19-0516 Agentúra na Podporu Výskumu a Vývoja

Relativistic effects are known to alter the chemical bonds and spectroscopic properties of heavy-element compounds. In this work, we introduce the concept of spin-orbit (SO) electronegativity of a heavy atom, as reflected by an SO-induced change in the interatomic distance between the heavy atom (HA) and a neighboring light atom (LA). We provide a transparent interpretation of these SO effects by using the concept of spin-orbit electron deformation density (SO-EDD). Spin-orbit coupling at the HA induces rearrangement of the electron density for the scalar-relativistically optimized geometry that, in turn, exerts a new force on the LA. The resulting expansion or contraction of the HA-LA bond depends on the nature and electron configuration of the HA. In addition, we quantify the change in atomic electronegativity induced by SO coupling for a series of hydrides, thereby complementing the SO-EDD picture. The trends in the SO-induced electronegativity and the HA-LA bond length across the periodic table of elements are demonstrated and interpreted, and also linked, intuitively, with the SO-induced NMR shielding at the LA.

Zobrazit více v PubMed

L. Pauling, J. Am. Chem. Soc. 1931, 53, 1367-1400.

L. Pauling, in The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, Cornell University Press, Ithaca, 2000.

C. Foroutan-Nejad, S. Shahbazian, R. Marek, Chem. Eur. J. 2014, 20, 10140-10152.

A. M. Pendás, J. L. Casals-Sainz, E. Francisco, Chem. Eur. J. 2019, 25, 309-314.

G. N. Lewis, J. Am. Chem. Soc. 1916, 38, 762-785.

L. Zhao, S. Pan, N. Holzmann, P. Schwerdtfeger, G. Frenking, Chem. Rev. 2019, 119, 8781-8845.

I. Mayer, J. Phys. Chem. A 2014, 118, 2543-2546.

F. Weinhold, R. A. Klein, Angew. Chem. Int. Ed. 2014, 53, 11214-11217;

Angew. Chem. 2014, 126, 11396-11399.

M. Novák, R. Marek, C. Foroutan-Nejad, Chem. Eur. J. 2017, 23, 14931-14936.

P. Pyykko, J. P. Desclaux, Acc. Chem. Res. 1979, 12, 276-281.

P. Hafner, P. Habitz, Y. Ishikawa, E. Wechsel-Trakowski, W. H. E. Schwarz, Chem. Phys. Lett. 1981, 80, 311-315.

T. Ziegler, J. G. Snijders, E. J. Baerends, J. Chem. Phys. 1981, 74, 1271-1284.

P. Pyykko, Chem. Rev. 1988, 88, 563-594.

K. G. Dyall, K. Faegri, in Introduction to Relativistic Quantum Chemistry, Oxford University Press, 2007.

G. Frenking, S. S. Shaik, in Fundamental Aspects of Chemical Bonding, Wiley-VCH, Weinheim, 2014.

T. R. Cundari, M. T. Benson, M. L. Lutz, S. O. Sommerer, in Reviews of Computational Chemistry (Eds.: K. B. Lipkowitz, D. B. Boyd), Wiley, Hoboken, 2007, pp. 145-202.

C. M. Marian, in Reviews of Computational Chemistry (Eds.: K. B. Lipkowitz, D. B. Boyd), Wiley, New York, 2001, pp. 99-204.

P. Pyykkö, A. Görling, N. Rösch, Mol. Phys. 1987, 61, 195-205.

J. Vícha, J. Novotný, S. Komorovsky, M. Straka, M. Kaupp, R. Marek, Chem. Rev. 2020, 120, 7065-7103.

W. H. E. Schwarz, S. Y. Chu, F. Mark, Mol. Phys. 1983, 50, 603-623.

R. J. F. Berger, J. Mol. Struct. 2017, 1132, 70-72.

S. Knecht, H. J. Aa Jensen, T. Saue, Nat. Chem. 2019, 11, 40-44.

T. B. Demissie, B. D. Garabato, K. Ruud, P. M. Kozlowski, Angew. Chem. Int. Ed. 2016, 55, 11503-11506;

Angew. Chem. 2016, 128, 11675-11678.

C. A. Gaggioli, L. Belpassi, F. Tarantelli, D. Zuccaccia, J. N. Harvey, P. Belanzoni, Chem. Sci. 2016, 7, 7034-7039.

J. Novotný, J. Vícha, P. L. Bora, M. Repisky, M. Straka, S. Komorovsky, R. Marek, J. Chem. Theory Comput. 2017, 13, 3586-3601.

M. Repisky, S. Komorovsky, M. Kadek, L. Konecny, U. Ekström, E. Malkin, M. Kaupp, K. Ruud, O. L. Malkina, V. G. Malkin, J. Chem. Phys. 2020, 152, 184101.

T. Zeng, D. G. Fedorov, M. W. Schmidt, M. Klobukowski, J. Chem. Theory Comput. 2011, 7, 2864-2875.

E. J. Baerends, T. Ziegler, A. J. Atkins, J. Autschbach, O. Baseggio, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, C. Daul, D. P. Chong, D. V. Chulhai, L. Deng, R. M. Dickson, J. M. Dieterich, D. E. Ellis, M. van Faassen, L. Fan, in ADF2019, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, 2019.

G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931-967.

W. H. E. Schwarz, Phys. Scr. 1987, 36, 403-411.

H. Schaefer, in Applications of Electronic Structure Theory, Springer US, 1977.

J. Novotný, M. Sojka, S. Komorovsky, M. Nečas, R. Marek, J. Am. Chem. Soc. 2016, 138, 8432-8445.

J. Vícha, S. Komorovsky, M. Repisky, R. Marek, M. Straka, J. Chem. Theory Comput. 2018, 14, 3025-3039.

A. H. Greif, P. Hrobárik, M. Kaupp, Chem. Eur. J. 2017, 23, 9790-9803.

M. Kaupp, P. v R Schleyer, H. Stoll, H. Preuss, J. Am. Chem. Soc. 1991, 113, 6012-6020.

Q. Wang, S. Pan, Y.-B. Wu, G. Deng, J.-H. Bian, G. Wang, L. Zhao, M. Zhou, G. Frenking, Angew. Chem. Int. Ed. 2019, 58, 17365-17374;

Angew. Chem. 2019, 131, 17526-17535.

I. Fernández, N. Holzmann, G. Frenking, Chem. Eur. J. 2020, 26, 14194-14210.

R. S. Mulliken, J. Chem. Phys. 1934, 2, 782-793.

R. S. Mulliken, J. Chem. Phys. 1935, 3, 573-585.

R. G. Pearson, J. Am. Chem. Soc. 1985, 107, 6801-6806.

J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity (4th edition), HarperCollins, New York, 1993, p. 183.

D.-C. Sergentu, G. David, G. Montavon, R. Maurice, N. Galland, J. Comput. Chem. 2016, 37, 1345-1354.

P. L. Bora, J. Novotný, K. Ruud, S. Komorovsky, R. Marek, J. Chem. Theory Comput. 2019, 15, 201-214.

E. Rossi, M. De Santis, D. Sorbelli, L. Storchi, L. Belpassi, P. Belanzoni, Phys. Chem. Chem. Phys. 2020, 22, 1897-1910.

P. L. Bora, M. Novák, J. Novotný, C. Foroutan-Nejad, R. Marek, Chem. Eur. J. 2017, 23, 7315-7323.

J. Joy, D. Danovich, M. Kaupp, S. Shaik, J. Am. Chem. Soc. 2020, 142, 12277-12287.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Quadratic Spin-Orbit Mechanism of the Electronic g-Tensor

. 2023 Mar 28 ; 19 (6) : 1765-1776. [epub] 20230310

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...