Isolation and Screening of the Novel Multi-Trait Strains for Future Implications in Phytotechnology

. 2025 Aug 15 ; 13 (8) : . [epub] 20250815

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40871407

Grantová podpora
AP23490702 Committee of Science of the Ministry of Science and Higher Education, the Republic of Kazakhstan
G6094 North Atlantic Treaty Organization Science for Peace and Security Programme

Odkazy

PubMed 40871407
PubMed Central PMC12388201
DOI 10.3390/microorganisms13081902
PII: microorganisms13081902
Knihovny.cz E-zdroje

Plant growth-promoting rhizobacteria (PGPRs) colonise the rhizosphere and root surfaces, enhancing crop development through a variety of mechanisms. This study evaluated microbial strains isolated from Triticum aestivum L. for key plant growth-promoting traits, including indole-3-acetic acid (IAA) production, phosphate and zinc (Zn) solubilisation, nitrogen (N2) fixation, and antifungal activity. Among 36 isolates, 3 (AS8, AS23, AS31) exhibited strong growth-promoting potential. IAA production, citrate assimilation, carbohydrate fermentation, and catalase activity were observed to a comparable extent among the selected strains. AS8 showed the highest protease, lipase, and amylolytic activity, while AS23 demonstrated superior phosphate and Zn solubilisation. Notably, AS31 emerged as the most promising multi-trait isolate, exhibiting the highest levels of IAA production, N2 fixation, antifungal activity against five phytopathogens (Fusarium graminearum, F. solani, F. oxysporum, Pythium aphanidermatum, and Alternaria alternata), potentially linked to its hydrogen sulphide (H2S) production, and cellulolytic activity. Molecular identification based on 16S rRNA gene sequencing revealed the isolates as Stenotrophomonas indicatrix AS8, Pantoea agglomerans AS23, and Bacillus thuringiensis AS31. Seed germination assays confirmed the plant growth-promoting efficacy of these PGPR strains, with vigour index increases of up to 43.4-fold. Given their positive impact on seed germination and significant Zn-solubilising abilities, the selected strains represent promising candidates for use as bio-inoculants, offering a sustainable and eco-friendly strategy to enhance agricultural productivity in nutrient-deficient soils. Future research should validate the efficacy of these PGPR strains under pot conditions to confirm their potential for practical agricultural applications.

Zobrazit více v PubMed

Tripathi A.D., Mishra R., Maurya K.K., Singh R.B., Wilson D.W. Chapter 1—Estimates for World Population and Global Food Availability for Global Health. In: Singh R.B., Watson R.R., Takahashi T., editors. The Role of Functional Food Security in Global Health. Academic Press; New York, NY, USA: 2019. pp. 3–24.

FAO. IFAD. UNICEF. WFP. WHO . Food Insecurity and Malnutrition in All Its Forms. FAO; Rome, Italy: 2024. The State of Food Security and Nutrition in the World 2024—Financing to End Hunger.

Akanmu A.O., Olowe O.M., Phiri A.T., Nirere D., Odebode A.J., Karemera Umuhoza N.J., Asemoloye M.D., Babalola O.O. Bioresources in Organic Farming: Implications for Sustainable Agricultural Systems. Horticulturae. 2023;9:659. doi: 10.3390/horticulturae9060659. DOI

Nurzhanova A., Pidlisnyuk V., Nurmagambetova A., Zhumasheva Z., Naizabayeva L., Mamirova A. Biochar as a Tool to Optimise Miscanthus sinensis Resilience and Phytoremediation Efficiency: Case Study of Contamination by Mixture of Ni and 4.4′-DDE. Environ. Chem. Ecotoxicol. 2025;7:802–818. doi: 10.1016/j.enceco.2025.04.006. DOI

Mishra S., Keswani C., Abhilash P.C., Fraceto L.F., Singh H.B. Integrated Approach of Agri-Nanotechnology: Challenges and Future Trends. Front. Plant Sci. 2017;8:471. doi: 10.3389/fpls.2017.00471. PubMed DOI PMC

Smirnova I., Sadanov A., Baimakhanova G., Faizulina E., Tatarkina L. Metabolic Interaction at the Level of Extracellular Amino Acids between Plant Growth-Promoting Rhizobacteria and Plants of Alfalfa (Medicago sativa L.) Rhizosphere. 2022;21:100477. doi: 10.1016/j.rhisph.2022.100477. DOI

Zharlygassov Z., Kalimov N., Ansabayeva A., Zharlygassov Z., Moskvicheva E., İslamzade R., Ay A., Akça İ., Kızılkaya R. Sustainable Nutrient Management and Agricultural Productivity in Chernozem Soils of the Kostanay Region, Kazakhstan. Eur. J. Sport Sci. 2025;14:98–106. doi: 10.18393/ejss.1592633. DOI

Batykova Z.K., Kistaubayeva A.S., Savitskaya I.S., Pidlisnyuk V. Isolation and Study of Plant Growth Promoting Rhizobacteria from Triticosecale Wittmack Growing in Almaty Region. Int. J. Biol. Chem. 2024;17:53–59. doi: 10.26577/IJBCh2024v17i1-a6. DOI

European Commission Organic Action Plan. [(accessed on 4 August 2024)]. Available online: https://agriculture.ec.europa.eu/farming/organic-farming/organic-action-plan_en.

Ajijah N., Fiodor A., Pandey A.K., Rana A., Pranaw K. Plant Growth-Promoting Bacteria (PGPB) with Biofilm-Forming Ability: A Multifaceted Agent for Sustainable Agriculture. Diversity. 2023;15:112. doi: 10.3390/d15010112. DOI

Nosheen S., Ajmal I., Song Y. Microbes as Biofertilizers, a Potential Approach for Sustainable Crop Production. Sustainability. 2021;13:1868. doi: 10.3390/su13041868. DOI

Umesha S., Manukumar H.M.G., Chandrasekhar B. Chapter 3—Sustainable Agriculture and Food Security. In: Singh R.L., Mondal S., editors. Biotechnology for Sustainable Agriculture. Woodhead Publishing; Cambridge, UK: 2018. pp. 67–92.

Wang T., Xu J., Chen J., Liu P., Hou X., Yang L., Zhang L. Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research. Plants. 2024;13:346. doi: 10.3390/plants13030346. PubMed DOI PMC

Pidlisnyuk V., Mamirova A., Pranaw K., Shapoval P.Y., Trögl J., Nurzhanova A. Potential Role of Plant Growth-Promoting Bacteria in Miscanthus x Giganteus Phytotechnology Applied to the Trace Elements Contaminated Soils. Int. Biodeterior. Biodegrad. 2020;155:105103. doi: 10.1016/j.ibiod.2020.105103. DOI

Pidlisnyuk V., Mamirova A., Pranaw K., Stadnik V., Kuráň P., Trögl J., Shapoval P. Miscanthus × Giganteus Phytoremediation of Soil Contaminated with Trace Elements as Influenced by the Presence of Plant Growth-Promoting Bacteria. Agronomy. 2022;12:771. doi: 10.3390/agronomy12040771. DOI

Nurzhanova A.A., Pidlisnyuk V., Berzhanova R., Nurmagambetova A.S., Terletskaya N., Omirbekova N., Berkinbayev G., Mamirova A. PGPR-Driven Phytoremediation and Physiobiochemical Response of Miscanthus × Giganteus to Stress Induced by the Trace Elements. Environ. Sci. Pollut. Res. 2023;30:96098–96113. doi: 10.1007/s11356-023-29031-5. PubMed DOI

Hasan A., Tabassum B., Hashim M., Khan N. Role of Plant Growth Promoting Rhizobacteria (PGPR) as a Plant Growth Enhancer for Sustainable Agriculture: A Review. Bacteria. 2024;3:59–75. doi: 10.3390/bacteria3020005. DOI

Basu A., Prasad P., Das S.N., Kalam S., Sayyed R.Z., Reddy M.S., El Enshasy H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability. 2021;13:1140. doi: 10.3390/su13031140. DOI

Fenta L. Bachelor’s Thesis. Addis Ababa University; Addis Ababa, Ethiopia: 2012. Isolation and Characterization of Phosphate Solubilizing Bacteria from Tomato (Solanum L.) Rhizosphere and Their Effect on Growth and Phosphorus Uptake of the Host Plant under Green House Experiment.

Bechtaoui N., Raklami A., Benidire L., Tahiri A., Göttfert M., Oufdou K. Effects of PGPR Co-Inoculation on Growth, Phosphorus Nutrition and Phosphatase/Phytase Activities of Faba Bean under Different Phosphorus Availability Conditions. Pol. J. Environ. Stud. 2020;29:1557–1565. doi: 10.15244/pjoes/110345. DOI

FAO/WHO . Human Vitamin and Mineral Requirements. Food and Agriculture Organization of the United Nations, Food and Nutrition Division; Bangkok, Thailand: 2001. p. 303.

Lopes M.J.d.S., Dias-Filho M.B., Gurgel E.S.C. Successful Plant Growth-Promoting Microbes: Inoculation Methods and Abiotic Factors. Front. Sustain. Food Syst. 2021;5:606454. doi: 10.3389/fsufs.2021.606454. DOI

Pal G., Kumar K., Verma A., Verma S.K. Seed Inhabiting Bacterial Endophytes of Maize Promote Seedling Establishment and Provide Protection against Fungal Disease. Microbiol. Res. 2022;255:126926. doi: 10.1016/j.micres.2021.126926. PubMed DOI

Pandey A., Das N., Kumar B., Rinu K., Trivedi P. Phosphate Solubilization by Penicillium Spp. Isolated from Soil Samples of Indian Himalayan Region. World J. Microbiol. Biotechnol. 2008;24:97–102. doi: 10.1007/s11274-007-9444-1. DOI

Shahwar D., Mushtaq Z., Mushtaq H., Alqarawi A.A., Park Y., Alshahrani T.S., Faizan S. Role of Microbial Inoculants as Bio Fertilizers for Improving Crop Productivity: A Review. Heliyon. 2023;9:e16134. doi: 10.1016/j.heliyon.2023.e16134. PubMed DOI PMC

Jana S.K., Islam M.M., Hore S., Mandal S. Rice Seed Endophytes Transmit into the Plant Seedling, Promote Plant Growth and Inhibit Fungal Phytopathogens. Plant Growth Regul. 2023;99:373–388. doi: 10.1007/s10725-022-00914-w. DOI

Sunitha Kumari K., Devi S.N.P., Ranjithkumar R., Djearamane S., Tey L.-H., Wong L.S., Kayarohanam S., Arumugam N., Almansour A.I., Perumal K. Organic Remobilization of Zinc and Phosphorus Availability to Plants by Application of Mineral Solubilizing Bacteria Pseudomonas aeruginosa. Heliyon. 2023;9:e22128. doi: 10.1016/j.heliyon.2023.e22128. PubMed DOI PMC

Abdelkefi N., Louati I., Mechichi H.-Z., Sayahi N., El-Sayed W.S., Nayal A.E., Ismail W., Hanin M., Mechichi T. Enhanced Salt Stress Tolerance in Tomato Plants Following Inoculation with Newly Isolated Plant Growth-Promoting Rhizobacteria. Sci. Hortic. 2024;328:112921. doi: 10.1016/j.scienta.2024.112921. DOI

Pidlisnyuk V., Mamirova A., Newton R.A., Stefanovska T., Zhukov O., Tsygankova V., Shapoval P. The Role of Plant Growth Regulators in Miscanthus × Giganteus Growth on Trace Elements-Contaminated Soils. Agronomy. 2022;12:2999. doi: 10.3390/agronomy12122999. DOI

Kumar A., Maurya B.R., Raghuwanshi R. Isolation and Characterization of PGPR and Their Effect on Growth, Yield and Nutrient Content in Wheat (Triticum aestivum L.) Biocatal. Agric. Biotechnol. 2014;3:121–128. doi: 10.1016/j.bcab.2014.08.003. DOI

Pidlisnyuk V., Mamirova A., Newton R.A., Grycová B., Klemencová K., Leštinský P., Ust’ak S., Shapoval P. Miscanthus Phytotechnology of Cu- or Zn-Spiked Soils Supported by Contaminated Miscanthus Biochar—Is This a Viable Option for Valorization? Environ. Sci. Pollut. Res. 2025;32:7737–7759. doi: 10.1007/s11356-025-36097-w. PubMed DOI

Umair Hassan M., Aamer M., Umer Chattha M., Haiying T., Shahzad B., Barbanti L., Nawaz M., Rasheed A., Afzal A., Liu Y., et al. The Critical Role of Zinc in Plants Facing the Drought Stress. Agriculture. 2020;10:396. doi: 10.3390/agriculture10090396. DOI

Janati W., Mikou K., El Ghadraoui L., Errachidi F. Isolation and Characterization of Phosphate Solubilizing Bacteria Naturally Colonizing Legumes Rhizosphere in Morocco. Front. Microbiol. 2022;13:958300. doi: 10.3389/fmicb.2022.958300. PubMed DOI PMC

Sharma P., Kumawat K.C., Kaur S., Kaur N. Assessment of Zinc Solubilization by Endophytic Bacteria in Legume Rhizosphere. Ind. J. Appl. Res. 2014;4:439–441. doi: 10.15373/2249555X/June2014/137. DOI

Chaffai R., Ganesan M., Cherif A. Plant Growth-Promoting Rhizobacteria (PGPR) and Plant Growth-Promoting Fungi (PGPF) for Alleviating Abiotic Stress in Plants. In: Chaffai R., Ganesan M., Cherif A., editors. Plant Adaptation to Abiotic Stress: From Signaling Pathways and Microbiomes to Molecular Mechanisms. Springer Nature; Singapore: 2024. pp. 457–496.

Pikovskaya R. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology. 1948;17:362–370.

ALKahtani M.D.F., Fouda A., Attia K.A., Al-Otaibi F., Eid A.M., Ewais E.E.-D., Hijri M., St-Arnaud M., Hassan S.E.-D., Khan N., et al. Isolation and Characterization of Plant Growth Promoting Endophytic Bacteria from Desert Plants and Their Application as Bioinoculants for Sustainable Agriculture. Agronomy. 2020;10:1325. doi: 10.3390/agronomy10091325. DOI

Varga T., Hixson K.K., Ahkami A.H., Sher A.W., Barnes M.E., Chu R.K., Battu A.K., Nicora C.D., Winkler T.E., Reno L.R., et al. Endophyte-Promoted Phosphorus Solubilization in Populus. Front. Plant Sci. 2020;11:567918. doi: 10.3389/fpls.2020.567918. PubMed DOI PMC

Youseif S.H. Genetic Diversity of Plant Growth Promoting Rhizobacteria and Their Effects on the Growth of Maize Plants under Greenhouse Conditions. Ann. Agric. Sci. 2018;63:25–35. doi: 10.1016/j.aoas.2018.04.002. DOI

Luziatelli F., Ficca A.G., Cardarelli M., Melini F., Cavalieri A., Ruzzi M. Genome Sequencing of Pantoea Agglomerans C1 Provides Insights into Molecular and Genetic Mechanisms of Plant Growth-Promotion and Tolerance to Heavy Metals. Microorganisms. 2020;8:153. doi: 10.3390/microorganisms8020153. PubMed DOI PMC

Shariati J. V., Malboobi M.A., Tabrizi Z., Tavakol E., Owlia P., Safari M. Comprehensive Genomic Analysis of a Plant Growth-Promoting Rhizobacterium Pantoea Agglomerans Strain P5. Sci. Rep. 2017;7:15610. doi: 10.1038/s41598-017-15820-9. PubMed DOI PMC

Vasseur-Coronado M., Vlassi A., du Boulois H.D., Schuhmacher R., Parich A., Pertot I., Puopolo G. Ecological Role of Volatile Organic Compounds Emitted by Pantoea Agglomerans as Interspecies and Interkingdom Signals. Microorganisms. 2021;9:1186. doi: 10.3390/microorganisms9061186. PubMed DOI PMC

Chanu P.H., Yadav J. Exploring Microbial Solutions: A Comprehensive Study on Isolating, Characterizing, and Selecting Zinc-Solubilizing Fungi from Rhizospheric Soil. Int. J. Plant Soil. Sci. 2024;36:369–377. doi: 10.9734/ijpss/2024/v36i34435. DOI

Wijerathna R.M.N., Wijeweera A.A., Wijethunga A.M., Mapa M.M.S.T. Determination of Oil Quality and Antifungal Effect of Selected Citronella Accessions (Cymbopogon Nardus, Cymbopogon Winterianus) to Formulate an Anti-Dandruff Shampoo. Biol. Med. Nat. Prod. Chem. 2023;12:485–498. doi: 10.14421/biomedich.2023.122.485-498. DOI

Krishnappa C., Balamurugan A., Velmurugan S., Kumar S., Sampathrajan V., Kundu A., Javed M., Chouhan V., Ganesan P., Kumar A. Rice Foliar-Adapted Pantoea Species: Promising Microbial Biostimulants Enhancing Rice Resilience against Foliar Pathogens, Magnaporthe Oryzae and Xanthomonas Oryzae Pv. Oryzae. Microb. Pathog. 2024;186:106445. doi: 10.1016/j.micpath.2023.106445. PubMed DOI

Ning Y., Xiao Z., Weinmann M., Li Z. Phosphate Uptake is Correlated with the Root Length of Celery Plants Following the Association Between Arbuscular Mycorrhizal Fungi, Pseudomonas Sp. and Biochar with Different Phosphate Fertilization Levels. Agronomy. 2019;9:824. doi: 10.3390/agronomy9120824. DOI

Saxena J., Rana G., Pandey M. Impact of Addition of Biochar along with Bacillus Sp. on Growth and Yield of French Beans. Sci. Hortic. 2013;162:351–356. doi: 10.1016/j.scienta.2013.08.002. DOI

Hosseini E., Zarei M., Sepehri M., Safarzadeh S. Do Bagasse Biochar and Microbial Inoculants Positively Affect Barley Grain Yield and Nutrients, and Microbial Activity? J. Plant Nutr. 2021;45:522–539. doi: 10.1080/01904167.2021.1952229. DOI

Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D. Biochar Effects on Soil Biota—A Review. Soil. Biol. Biochem. 2011;43:1812–1836. doi: 10.1016/j.soilbio.2011.04.022. DOI

Wang Y., Li W., Du B., Li H. Effect of Biochar Applied with Plant Growth-Promoting Rhizobacteria (PGPR) on Soil Microbial Community Composition and Nitrogen Utilization in Tomato. Pedosphere. 2021;31:872–881. doi: 10.1016/S1002-0160(21)60030-9. DOI

Jabborova D., Wirth S., Kannepalli A., Narimanov A., Desouky S., Davranov K., Sayyed R.Z., El Enshasy H., Malek R.A., Syed A., et al. Co-Inoculation of Rhizobacteria and Biochar Application Improves Growth and Nutrientsin Soybean and Enriches Soil Nutrients and Enzymes. Agronomy. 2020;10:1142. doi: 10.3390/agronomy10081142. DOI

Ren H., Huang B., Fernández-García V., Miesel J., Yan L., Lv C. Biochar and Rhizobacteria Amendments Improve Several Soil Properties and Bacterial Diversity. Microorganisms. 2020;8:502. doi: 10.3390/microorganisms8040502. PubMed DOI PMC

Dayoub E.B., Tóth Z., Soós G., Anda A. Chemical and Physical Properties of Selected Biochar Types and a Few Application Methods in Agriculture. Agronomy. 2024;14:2540. doi: 10.3390/agronomy14112540. DOI

Pidlisnyuk V., Newton R.A., Mamirova A. Miscanthus Biochar Value Chain—A Review. J. Environ. Manag. 2021;290:112611. doi: 10.1016/j.jenvman.2021.112611. PubMed DOI

Sharma S., Negi M., Sharma U., Kumar P., Chauhan A., Shavnam, Katoch V., Sharma R. A Critique of the Effectiveness of Biochar for Managing Soil Health and Soil Biota. Appl. Soil. Ecol. 2023;191:105065. doi: 10.1016/j.apsoil.2023.105065. DOI

Soil Quality—Sampling—Part 206: Collection, Handling and Storage of Soil under Aerobic Conditions for the Assessment of Microbiological Processes, Biomass and Diversity in the Laboratory. International Organization for Standardization; Geneva, Switzerland: 2018.

McPherson M.R., Wang P., Marsh E.L., Mitchell R.B., Schachtman D.P. Isolation and Analysis of Microbial Communities in Soil, Rhizosphere, and Roots in Perennial Grass Experiments. J. Vis. Exp. 2018;137:57932. doi: 10.3791/57932. PubMed DOI PMC

Hartmann A., Schmid M., van Tuinen D., Berg G. Plant-Driven Selection of Microbes. Plant Soil. 2009;321:235–257. doi: 10.1007/s11104-008-9814-y. DOI

Khan M.F., Liao J., Liu Z., Chugh G. Bacterial Cytochrome P450 Involvement in the Biodegradation of Fluorinated Pyrethroids. J. Xenobiotics. 2025;15:58. doi: 10.3390/jox15020058. PubMed DOI PMC

Mohite B. Isolation and Characterization of Indole Acetic Acid (IAA) Producing Bacteria from Rhizospheric Soil and Its Effect on Plant Growth. J. Soil. Sci. Plant Nutr. 2013;13:638–649. doi: 10.4067/S0718-95162013005000051. DOI

Mamarasulov B., Davranov K., Jahan M.S., Jabborova D., Nasif O., Ansari M.J., Danish S., Datta R. Characterization, Enzymatic and Biochemical Properties of Endophytic Bacterial Strains of the Medicinal Plant Ajuga Turkestanica (Rgl.) Brig (Lamiaceae) J. King Saud. Univ.-Sci. 2022;34:102183. doi: 10.1016/j.jksus.2022.102183. DOI

Ali B., Wang X., Saleem M.H., Sumaira, Hafeez A., Afridi M.S., Khan S., Zaib-Un-Nisa, Ullah I., Amaral Júnior A.T.d., et al. PGPR-Mediated Salt Tolerance in Maize by Modulating Plant Physiology, Antioxidant Defense, Compatible Solutes Accumulation and Bio-Surfactant Producing Genes. Plants. 2022;11:345. doi: 10.3390/plants11030345. PubMed DOI PMC

Khianngam S., Meetum P., Chiangmai P.N., Tanasupawat S. Identification and Optimisation of Indole-3-Acetic Acid Production of Endophytic Bacteria and Their Effects on Plant Growth. Trop. Life Sci. Res. 2023;34:219–239. doi: 10.21315/tlsr2023.34.1.12. PubMed DOI PMC

Boubekri K., Soumare A., Mardad I., Lyamlouli K., Hafidi M., Ouhdouch Y., Kouisni L. The Screening of Potassium- and Phosphate-Solubilizing Actinobacteria and the Assessment of Their Ability to Promote Wheat Growth Parameters. Microorganisms. 2021;9:470. doi: 10.3390/microorganisms9030470. PubMed DOI PMC

Shalaby M., Elbagory M., EL-Khateeb N., Mehesen A., EL-Sheshtawy O., Elsakhawy T., Omara A.E.-D. Potential Impacts of Certain N2-Fixing Bacterial Strains and Mineral N Doses for Enhancing the Growth and Productivity of Maize Plants. Plants. 2023;12:3830. doi: 10.3390/plants12223830. PubMed DOI PMC

Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC

Patel M., Mistry J., Desai S., Patel S., Desai S. Isolation and Characterization of Lipase Producing Bacteria from Vegetable Oil Spillage Site. Int. J. Curr. Microbiol. App. Sci. 2016;5:214–232. doi: 10.20546/ijcmas.2016.508.023. DOI

Ojovan B., Catana R., Neagu S., Cojoc R., Lucaci A.I., Marutescu L., Florescu L., Ruginescu R., Enache M., Moldoveanu M. Metabolic Potential of Some Functional Groups of Bacteria in Aquatic Urban Systems. Fermentation. 2021;7:242. doi: 10.3390/fermentation7040242. DOI

Ntabo R.M., Nyamache A.K., Lwande W., Kabii J., Nonoh J. Enzymatic Activity of Endophytic Bacterial Isolates from Selected Mangrove Plants in Kenya. Open Microbiol. J. 2018;12:354–363. doi: 10.2174/1874285801812010354. DOI

Malleswari D., Bagyanarayana G. Plant Growth-Promoting Activities and Molecular Characterization of Rhizobacterial Strains Isolated from Medicinal and Aromatic Plants. J. Pharm. Biol. Sci. 2013;6:30–37. doi: 10.9790/3008-0663037. DOI

Kasana R.C., Salwan R., Dhar H., Dutt S., Gulati A. A Rapid and Easy Method for the Detection of Microbial Cellulases on Agar Plates Using Gram’s Iodine. Curr. Microbiol. 2008;57:503–507. doi: 10.1007/s00284-008-9276-8. PubMed DOI

Bučková M., Godočíková J., Zámocký M., Polek B. Screening of Bacterial Isolates from Polluted Soils Exhibiting Catalase and Peroxidase Activity and Diversity of Their Responses to Oxidative Stress. Curr. Microbiol. 2010;61:241–247. doi: 10.1007/s00284-010-9601-x. PubMed DOI

Shaikh N.M., Patel A., Mehta S., Patel N. Isolation and Screening of Cellulolytic Bacteria Inhabiting Different Environment and Optimization of Cellulase Production. Univers. J. Environ. Res. Technol. 2013;3:39–49.

Wilson K. Preparation of Genomic DNA from Bacteria. Curr. Protoc. Mol. Biol. 2001;56 doi: 10.1002/0471142727.mb0204s56. PubMed DOI

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC

Tamura K., Nei M. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and Chimpanzees. Mol. Biol. Evol. 1993;10:512–526. doi: 10.1093/oxfordjournals.molbev.a040023. PubMed DOI

Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC

La Pierre K.J., Simms E.L., Tariq M., Zafar M., Porter S.S. Invasive Legumes Can Associate with Many Mutualists of Native Legumes, but Usually Do Not. Ecol. Evol. 2017;7:8599–8611. doi: 10.1002/ece3.3310. PubMed DOI PMC

Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S Ribosomal DNA Amplification for Phylogenetic Study. J. Bacteriol. 1991;173:697–703. doi: 10.1128/jb.173.2.697-703.1991. PubMed DOI PMC

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Zahra S.T., Tariq M., Abdullah M., Azeem F., Ashraf M.A. Dominance of Bacillus Species in the Wheat (Triticum aestivum L.) Rhizosphere and Their Plant Growth Promoting Potential under Salt Stress Conditions. PeerJ. 2023;11:e14621. doi: 10.7717/peerj.14621. PubMed DOI PMC

Zhang Z., Schwartz S., Wagner L., Miller W. A Greedy Algorithm for Aligning DNA Sequences. J. Comput. Biol. 2000;7:203–214. doi: 10.1089/10665270050081478. PubMed DOI

Muhire B.M., Varsani A., Martin D.P. SDT: A Virus Classification Tool Based on Pairwise Sequence Alignment and Identity Calculation. PLoS ONE. 2014;9:e108277. doi: 10.1371/journal.pone.0108277. PubMed DOI PMC

Zhang Z., Ma R., Tao Y., Wang Z., Yang Y. Effects of Fe and Zn Alone and Combined Treatment on Triticum aestivum L. Seed Germination. BMC Plant Biol. 2025;25:430. doi: 10.1186/s12870-025-06446-5. PubMed DOI PMC

Iswandi A., Bossier P., Vandenabeele J., Verstraete W. Effect of Seed Inoculation with the Rhizopseudomonad Strain 7NSK2 on the Root Microbiota of Maize (Zea mays) and Barley (Hordeum vulgare) Biol. Fert. Soils. 1987;3:153–158. doi: 10.1007/BF00255776. DOI

Tricker P.J., ElHabti A., Schmidt J., Fleury D. The Physiological and Genetic Basis of Combined Drought and Heat Tolerance in Wheat. J. Exp. Bot. 2018;69:3195–3210. doi: 10.1093/jxb/ery081. PubMed DOI

Nawaz F., Zulfiqar B., Ahmad K.S., Majeed S., Shehzad M.A., Javeed H.M.R., Tahir M.N., Ahsan M. Pretreatment with Selenium and Zinc Modulates Physiological Indices and Antioxidant Machinery to Improve Drought Tolerance in Maize (Zea Mays L.) S. Afr. J. Bot. 2021;138:209–216. doi: 10.1016/j.sajb.2020.12.016. DOI

Aghaie P., Tafreshi S.A.H. Central Role of 70-kDa Heat Shock Protein in Adaptation of Plants to Drought Stress. Cell Stress. Chaperones. 2020;25:1071–1081. doi: 10.1007/s12192-020-01144-7. PubMed DOI PMC

Khan N., Ali S., Tariq H., Latif S., Yasmin H., Mehmood A., Shahid M.A. Water Conservation and Plant Survival Strategies of Rhizobacteria under Drought Stress. Agronomy. 2020;10:1683. doi: 10.3390/agronomy10111683. DOI

Flexas J., Bota J., Loreto F., Cornic G., Sharkey T.D. Diffusive and Metabolic Limitations to Photosynthesis under Drought and Salinity in C3 Plants. Plant Biol. 2004;6:269–279. doi: 10.1055/s-2004-820867. PubMed DOI

Naz R., Gul F., Zahoor S., Nosheen A., Yasmin H., Keyani R., Shahid M., Hassan M.N., Siddiqui M.H., Batool S., et al. Interactive Effects of Hydrogen Sulphide and Silicon Enhance Drought and Heat Tolerance by Modulating Hormones, Antioxidant Defence Enzymes and Redox Status in Barley (Hordeum vulgare L.) Plant Biol. 2022;24:684–696. doi: 10.1111/plb.13374. PubMed DOI

Wang D., Cao Z., Wang W., Zhu W., Hao X., Fang Z., Liu S., Wang X., Zhao C., Tang Y. Genome-Wide Characterization of OFP Family Genes in Wheat (Triticum aestivum L.) Reveals That TaOPF29a-A Promotes Drought Tolerance. BioMed Res. Int. 2020;2020:9708324. doi: 10.1155/2020/9708324. PubMed DOI PMC

Kumar Arora N., Fatima T., Mishra J., Mishra I., Verma S., Verma R., Verma M., Bhattacharya A., Verma P., Mishra P., et al. Halo-Tolerant Plant Growth Promoting Rhizobacteria for Improving Productivity and Remediation of Saline Soils. J. Adv. Res. 2020;26:69–82. doi: 10.1016/j.jare.2020.07.003. PubMed DOI PMC

Mahapatra S., Yadav R., Ramakrishna W. Bacillus Subtilis Impact on Plant Growth, Soil Health and Environment: Dr. Jekyll and Mr. Hyde. J. Appl. Microbiol. 2022;132:3543–3562. doi: 10.1111/jam.15480. PubMed DOI

Sabki M.H., Ong P.Y., Ibrahim N., Lee C.T., Klemeš J.J., Li C., Gao Y. A Review on Abiotic Stress Tolerance and Plant Growth Metabolite Framework by Plant Growth-Promoting Bacteria for Sustainable Agriculture. Chem. Eng. Trans. 2021;83:367–372. doi: 10.3303/CET2183062. DOI

Majeed A., Abbasi M.K., Hameed S., Imran A., Rahim N. Isolation and Characterization of Plant Growth-Promoting Rhizobacteria from Wheat Rhizosphere and Their Effect on Plant Growth Promotion. Front. Microbiol. 2015;6:198. doi: 10.3389/fmicb.2015.00198. PubMed DOI PMC

Sheirdil R.A., Hayat R., Zhang X.-X., Abbasi N.A., Ali S., Ahmed M., Khattak J.Z.K., Ahmad S. Exploring Potential Soil Bacteria for Sustainable Wheat (Triticum aestivum L.) Production. Sustainability. 2019;11:3361. doi: 10.3390/su11123361. DOI

Cherif-Silini H., Silini A., Yahiaoui B., Ouzari I., Boudabous A. Phylogenetic and Plant-Growth-Promoting Characteristics of Bacillus Isolated from the Wheat Rhizosphere. Ann. Microbiol. 2016;66:1087–1097. doi: 10.1007/s13213-016-1194-6. DOI

Delfim J., Dijoo Z.K. Bacillus Thuringiensis as a Biofertilizer and Plant Growth Promoter. In: Dar G.H., Bhat R.A., Mehmood M.A., Hakeem K.R., editors. Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs. Springer International Publishing; Cham, Switzerland: 2021. pp. 251–265.

Ibarra-Villarreal A.L., Gándara-Ledezma A., Godoy-Flores A.D., Herrera-Sepúlveda A., Díaz-Rodríguez A.M., Parra-Cota F.I., de los Santos-Villalobos S. Salt-Tolerant Bacillus Species as a Promising Strategy to Mitigate the Salinity Stress in Wheat (Triticum Turgidum Subsp. Durum) J. Arid. Environ. 2021;186:104399. doi: 10.1016/j.jaridenv.2020.104399. DOI

Ali B., Hafeez A., Ahmad S., Javed M.A., Sumaira, Afridi M.S., Dawoud T.M., Almaary K.S., Muresan C.C., Marc R.A., et al. Bacillus Thuringiensis PM25 Ameliorates Oxidative Damage of Salinity Stress in Maize via Regulating Growth, Leaf Pigments, Antioxidant Defense System, and Stress Responsive Gene Expression. Front. Plant Sci. 2022;13:921668. doi: 10.3389/fpls.2022.921668. PubMed DOI PMC

Khan M.S., Gao J., Zhang M., Chen X., Moe T.S., Du Y., Yang F., Xue J., Zhang X. Isolation and Characterization of Plant Growth-Promoting Endophytic Bacteria Bacillus Stratosphericus LW-03 from Lilium Wardii. 3 Biotech. 2020;10:305. doi: 10.1007/s13205-020-02294-2. PubMed DOI PMC

Huu Dat T., Thi Kim N., Viet Cuong P. Optimization of Indole-3-Acetic Acid Production by Bacillus subtilisTIB6 Using Responses Surface Methodology. Int. J. Dev. Res. 2015;5:4036–4042.

Choudhury P., Jawed A., Saha P. Optimization of Phytostimulatory Potential in Bacillus Toyonensis Isolated from Tea Plant Rhizosphere Soil of Nilgiri Hills, India. Int. J. Eng. Sci. Invent. 2017;6:13–18.

Apine O.A., Jadhav J.P. Optimization of Medium for Indole-3-acetic Acid Production Using Pantoea Agglomerans Strain PVM. J. Appl. Microbiol. 2011;110:1235–1244. doi: 10.1111/j.1365-2672.2011.04976.x. PubMed DOI

Chandra S., Askari K., Kumari M. Optimization of Indole Acetic Acid Production by Isolated Bacteria from Stevia Rebaudiana Rhizosphere and Its Effects on Plant Growth. J. Genet. Eng. Biotechnol. 2018;16:581–586. doi: 10.1016/j.jgeb.2018.09.001. PubMed DOI PMC

Khan M.S., Zaidi A., Wani P.A., Ahemad M., Oves M. Functional Diversity Among Plant Growth-Promoting Rhizobacteria: Current Status. In: Khan M.S., Zaidi A., Musarrat J., editors. Microbial Strategies for Crop Improvement. Springer; Berlin/Heidelberg, Germany: 2009. pp. 105–132.

Gontia-Mishra I., Sapre S., Kachare S., Tiwari S. Molecular Diversity of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Producing PGPR from Wheat (Triticum aestivum L.) Rhizosphere. Plant Soil. 2017;414:213–227. doi: 10.1007/s11104-016-3119-3. DOI

Ahmad I., Ahmad M., Hussain A., Jamil M. Integrated Use of Phosphate-Solubilizing Bacillus Subtilis Strain IA6 and Zinc-Solubilizing Bacillus Sp. Strain IA16: A Promising Approach for Improving Cotton Growth. Folia Microbiol. 2021;66:115–125. doi: 10.1007/s12223-020-00831-3. PubMed DOI

Ramesh A., Sharma S.K., Sharma M.P., Yadav N., Joshi O.P. Inoculation of Zinc Solubilizing Bacillus aryabhattai Strains for Improved Growth, Mobilization and Biofortification of Zinc in Soybean and Wheat Cultivated in Vertisols of Central India. Appl. Soil. Ecol. 2014;73:87–96. doi: 10.1016/j.apsoil.2013.08.009. DOI

Mehmood S., Khan A.A., Shi F., Tahir M., Sultan T., Munis M.F.H., Kaushik P., Alyemeni M.N., Chaudhary H.J. Alleviation of Salt Stress in Wheat Seedlings via Multifunctional Bacillus Aryabhattai PM34: An In-Vitro Study. Sustainability. 2021;13:8030. doi: 10.3390/su13148030. DOI

Dhaked B.S., Triveni S., Reddy R.S., Padmaja G. Isolation and Screening of Potassium and Zinc Solubilizing Bacteria from Different Rhizosphere Soil. Int. J. Curr. Microbiol. App. Sci. 2017;6:1271–1281. doi: 10.20546/ijcmas.2017.608.154. DOI

Singh S., Chhabra R., Sharma A., Bisht A. Harnessing the Power of Zinc-Solubilizing Bacteria: A Catalyst for a Sustainable Agrosystem. Bacteria. 2024;3:15–29. doi: 10.3390/bacteria3010002. DOI

Sehrawat A., Sindhu S.S. Zinc-Solubilizing Microorganisms: Contributions in Nutrient Availability and Implications for Crop Productivity in Sustainable Agriculture. In: Sayyed R.Z., Ilyas N., editors. Plant Holobiome Engineering for Climate-Smart Agriculture. Springer Nature; Singapore: 2024. pp. 183–213.

Haroon M., Khan S.T., Malik A. Zinc-Solubilizing Bacteria: An Option to Increase Zinc Uptake by Plants. In: Khan S.T., Malik A., editors. Microbial Biofertilizers and Micronutrient Availability: The Role of Zinc in Agriculture and Human Health. Springer International Publishing; Cham, Switzerland: 2022. pp. 207–238.

Shakeel M., Hafeez F.Y., Malik I.R., Rauf A., Jan F., Khan I., Ijaz I., Elsadek M.F., Ali M.A., Rashid K., et al. Zinc Solubilizing Bacteria Synergize the Effect of Zinc Sulfate on Growth, Yield and Grain Zinc Content of Rice (Oryza sativa) Cereal Res. Commun. 2024;52:961–971. doi: 10.1007/s42976-023-00439-6. DOI

Rahman A., Ahmad M.A., Mehmood S., Rauf A., Iqbal A., Ali B., Ullah M., Ali M., Mohamed H.I., Uddin I. Isolation and Screening of Zn (Zn) Solubilizing Rhizosphere Bacteria from Different Vegetations for Their Ability to Improve Growth, Zn Uptake, and Expression of Zn Transporter Genes in Tomato. Curr. Microbiol. 2024;81:83. doi: 10.1007/s00284-023-03610-8. PubMed DOI

Luo D., Shi J., Li M., Chen J., Wang T., Zhang Q., Yang L., Zhu N., Wang Y. Consortium of Phosphorus-Solubilizing Bacteria Promotes Maize Growth and Changes the Microbial Community Composition of Rhizosphere Soil. Agronomy. 2024;14:1535. doi: 10.3390/agronomy14071535. DOI

Alemneh A.A., Cawthray G.R., Zhou Y., Ryder M.H., Denton M.D. Ability to Produce Indole Acetic Acid Is Associated with Improved Phosphate Solubilising Activity of Rhizobacteria. Arch. Microbiol. 2021;203:3825–3837. doi: 10.1007/s00203-021-02364-w. PubMed DOI

Kumar V., Prasher I.B. Phosphate Solubilization and Indole-3-Acetic Acid (IAA) Produced by Colletotrichum Gloeosporioides and Aspergillus Fumigatus Strains Isolated from the Rhizosphere of Dillenia indica L. Folia Microbiol. 2023;68:219–229. doi: 10.1007/s12223-022-01004-0. PubMed DOI

Kaur H., Mir R.A., Hussain S.J., Prasad B., Kumar P., Aloo B.N., Sharma C.M., Dubey R.C. Prospects of Phosphate Solubilizing Microorganisms in Sustainable Agriculture. World J. Microbiol. Biotechnol. 2024;40:291. doi: 10.1007/s11274-024-04086-9. PubMed DOI

Berza B., Sekar J., Vaiyapuri P., Pagano M.C., Assefa F. Evaluation of Inorganic Phosphate Solubilizing Efficiency and Multiple Plant Growth Promoting Properties of Endophytic Bacteria Isolated from Root Nodules Erythrina Brucei. BMC Microbiol. 2022;22:276. doi: 10.1186/s12866-022-02688-7. PubMed DOI PMC

Wang J., Li R., Zhang H., Wei G., Li Z. Beneficial Bacteria Activate Nutrients and Promote Wheat Growth under Conditions of Reduced Fertilizer Application. BMC Microbiol. 2020;20:38. doi: 10.1186/s12866-020-1708-z. PubMed DOI PMC

Peng J., Ma J., Wei X., Zhang C., Jia N., Wang X., Wang E.T., Hu D., Wang Z. Accumulation of Beneficial Bacteria in the Rhizosphere of Maize (Zea mays L.) Grown in a Saline Soil in Responding to a Consortium of Plant Growth Promoting Rhizobacteria. Ann. Microbiol. 2021;71:40. doi: 10.1186/s13213-021-01650-8. DOI

Riseh R.S., Vatankhah M., Hassanisaadi M., Barka E.A. Unveiling the Role of Hydrolytic Enzymes from Soil Biocontrol Bacteria in Sustainable Phytopathogen Management. Front. Biosci.-Landmark. 2024;29:105. doi: 10.31083/j.fbl2903105. PubMed DOI

Admassie M., Woldehawariat Y., Alemu T. In Vitro Evaluation of Extracellular Enzyme Activity and Its Biocontrol Efficacy of Bacterial Isolates from Pepper Plants for the Management of Phytophthora Capsici. BioMed Res. Int. 2022;2022:6778352. doi: 10.1155/2022/6778352. PubMed DOI PMC

Wang H., Liu R., You M.P., Barbetti M.J., Chen Y. Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms. 2021;9:1988. doi: 10.3390/microorganisms9091988. PubMed DOI PMC

Rivera-Hernández G., Tijerina-Castro G.D., Cortés-Pérez S., Ferrera-Cerrato R., Alarcón A. Evaluation of Functional Plant Growth-Promoting Activities of Culturable Rhizobacteria Associated to Tunicate Maize (Zea mays var. tunicata A. St. Hil), a Mexican Exotic Landrace Grown in Traditional Agroecosystems. Front. Microbiol. 2024;15:1478807. doi: 10.3389/fmicb.2024.1478807. PubMed DOI PMC

Mishra P., Mishra J., Dwivedi S.K., Arora N.K. Microbial Enzymes in Biocontrol of Phytopathogens. In: Arora N.K., Mishra J., Mishra V., editors. Microbial Enzymes: Roles and Applications in Industries. Springer; Singapore: 2020. pp. 259–285.

Zalila-Kolsi I., Ben-Mahmoud A., Al-Barazie R. Bacillus Amyloliquefaciens: Harnessing Its Potential for Industrial, Medical, and Agricultural Applications—A Comprehensive Review. Microorganisms. 2023;11:2215. doi: 10.3390/microorganisms11092215. PubMed DOI PMC

Sritongon N., Boonlue S., Mongkolthanaruk W., Jogloy S., Riddech N. The Combination of Multiple Plant Growth Promotion and Hydrolytic Enzyme Producing Rhizobacteria and Their Effect on Jerusalem Artichoke Growth Improvement. Sci. Rep. 2023;13:5917. doi: 10.1038/s41598-023-33099-x. PubMed DOI PMC

Azman N.A., Sijam K., Hata E.M., Othman R., Saud H.M. Screening of Bacteria as Antagonist Against Xanthomonas Oryzae Pv. Oryzae, the Causal Agent of Bacterial Leaf Blight of Paddy and as Plant Growth Promoter. J. Exp. Agric. Int. 2017;16:1–15. doi: 10.9734/JEAI/2017/33697. DOI

Fadiji A.E., Babalola O.O. Elucidating Mechanisms of Endophytes Used in Plant Protection and Other Bioactivities with Multifunctional Prospects. Front. Bioeng. Biotechnol. 2020;8:467. doi: 10.3389/fbioe.2020.00467. PubMed DOI PMC

Jacob J., Krishnan G.V., Thankappan D., Bhaskaran Nair Saraswathy Amma D.K. 4-Endophytic Bacterial Strains Induced Systemic Resistance in Agriculturally Important Crop Plants. In: Kumar A., E.K R., editors. Microbial Endophytes. Woodhead Publishing; Cambridge, UK: 2020. pp. 75–105.

Egamberdieva D., Shurigin V., Alaylar B., Wirth S., Bellingrath-Kimura S.D. Bacterial Endophytes from Horseradish (Armoracia rusticana G. Gaertn.,B.Mey.&Scherb.) with Antimicrobial Efficacy against Pathogens. Plant Soil. Environ. 2020;66:309–316. doi: 10.17221/137/2020-PSE. DOI

Sebihi F.Z., Benguedouar A., Benhizia Y., Sanchez J., Gallego E. Evaluation of Multi-Trait Plant Growth Promoting Pseudomonas Fluorescens Isolated from Constantine Wheat Rhizosphere Soil (Algeria) and Screening There Antifungal Activity against Two Species of Fusarium. Adv. Environ. Biol. 2016;10:102–116.

Adeleke B.S., Ayangbenro A.S., Babalola O.O. In vitro Screening of Sunflower Associated Endophytic Bacteria With Plant Growth-Promoting Traits. Front. Sustain. Food Syst. 2022;6:903114. doi: 10.3389/fsufs.2022.903114. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...