Miscanthus phytotechnology of Cu- or Zn-spiked soils supported by contaminated Miscanthus biochar-is this a viable option for valorization?
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40045079
DOI
10.1007/s11356-025-36097-w
PII: 10.1007/s11356-025-36097-w
Knihovny.cz E-zdroje
- Klíčová slova
- Miscanthus × giganteus, Bioparameters, Phytoremediation metrics, Pyrolysis, Waste biomass,
- MeSH
- biodegradace MeSH
- biomasa MeSH
- dřevěné a živočišné uhlí * MeSH
- kořeny rostlin MeSH
- látky znečišťující půdu * MeSH
- lipnicovité * MeSH
- měď MeSH
- půda chemie MeSH
- zinek * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biochar MeSH Prohlížeč
- dřevěné a živočišné uhlí * MeSH
- látky znečišťující půdu * MeSH
- měď MeSH
- půda MeSH
- zinek * MeSH
Different agricultural practices can be beneficial in Miscanthus × giganteus (M × g) phytotechnology applied to post-military and post-mining lands. However, only limited research has focused on supportive treatments using biochar produced from M × g waste. Indeed, when M × g phytotechnology is applied to contaminated soil, the biochar produced through the pyrolysis of the obtained biomass is contaminated, raising concerns about its further application. The current study tested the use of biochar produced from M × g roots cultivated long-term in slightly contaminated soil in the M × g phytotechnology of Cu- or Zn-spiked soils which is important for finding the solution toward valorization of the contaminated biomass. Two biochar doses (1.67 and 5.00%) were evaluated with varying levels of Cu (200 to 416 mg kg-1) or Zn (202 to 580 mg kg-1) concentrations in the soils. This study revealed a beneficial influence of biochar on M × g development, specifically by increasing the plant height and aboveground biomass by up to 20.4 and 115%, respectively. However, the root dry weight increased by 31.8% only at the highest application rate of biochar. The option for valorization of the contaminated biochar in the next phytoremediation process applied to soil contaminated more than the biochar itself was tested. The finding showed the positive influence of biochar on the M × g phytoremediation metrics such as tolerance index, bioconcentration factor, translocation factor, and comprehensive bioconcentration index which ensured the perspective of the proposed approach in the implementation of post-remediation management practice.
Zobrazit více v PubMed
Andrejić G, Šinžar-Sekulić J, Prica M, Dželetović Ž, Rakić T (2019) Phytoremediation potential and physiological response of Miscanthus × giganteus cultivated on fertilized and non-fertilized flotation tailings. Environ Sci Pollut Res 26:34658–34669. https://doi.org/10.1007/s11356-019-06543-7 DOI
Annamalai SJK, Naik R (2012) Performance of power tiller mounted turmeric harvester at optimized crop and operational parameters. J Plant Crops India 40(3):193–198. Available at: https://krishi.icar.gov.in/jspui/bitstream/123456789/55117/1/Ravindra%20Naik%20_power%20tiller%20harvester_turmeric.pdf . Assessed 8 Mar 2024.
Arundale RA, Dohleman FG, Heaton EA, McGrath JM, Voigt TB, Long SP (2014) Yields of Miscanthus × giganteus and Panicum virgatum decline with stand age in the Midwestern USA. GCB Bioenergy 6:1–13. https://doi.org/10.1111/gcbb.12077 DOI
ASTM D1762–84, (2021) Standard test method for chemical analysis of wood charcoal. American Society for Testing and Materials International, West Conshohocken, PA, USA. https://doi.org/10.1520/D1762-84R21
ASTM D5373–21, (2021) Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. American Society for Testing and Materials International, West Conshohocken, PA, USA. https://doi.org/10.1520/D5373-21
ASTM D6556–21, (2021) Standard test method for carbon black—total and external surface area by nitrogen adsorption. American Society for Testing and Materials International, West Conshohocken, PA, USA. https://doi.org/10.1520/D6556-21
ASTM E711–23e1, (2023) Standard test method for gross calorific value of refuse-derived fuel by the bomb calorimeter. American Society for Testing and Materials International, West Conshohocken, PA, USA. https://doi.org/10.1520/E0711-23E01
Azzi ES, Karltun E, Sundberg C (2021) Small-scale biochar production on Swedish farms: a model for estimating potential, variability, and environmental performance. J Clean Prod 280:124873. https://doi.org/10.1016/j.jclepro.2020.124873 DOI
Basavaraj Jayan PR (2020) Investigations on soil, crop and machine parameters towards the development of a root crop harvester. Doctoral Thesis, Department of Farm machinery and Power Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, Malappuram District, Kerala, India. Available at: http://14.139.185.57:8080/jspui/bitstream/123456789/10494/1/175039.pdf . Assessed 8 Mar 2024.
Bastia G, Al Souki KS, Pourrut B (2023) Evaluation of Miscanthus × giganteus tolerance to trace element stress: field experiment with soils possessing gradient Cd, Pb, and Zn concentrations. Plants 12:1560. https://doi.org/10.3390/plants12071560 DOI
Bilandžija N, Zgorelec Ž, Pezo L, Grubor M, Gudelj Velaga A, Krička T (2022) Solid biofuels properties of Miscanthus × giganteus cultivated on contaminated soil after phytoremediation process. J Energy Inst 101:131–139. https://doi.org/10.1016/j.joei.2022.01.007 DOI
Bousdra T, Papadimou SG, Golia EE (2023) The use of biochar in the remediation of Pb, Cd, and Cu-contaminated soils. The impact of biochar feedstock and preparation conditions on its remediation capacity. Land 12:383. https://doi.org/10.3390/land12020383
Brtnicky M, Datta R, Holatko J, Bielska L, Gusiatin ZM, Kucerik J, Hammerschmiedt T, Danish S, Radziemska M, Mravcova L, Fahad S, Kintl A, Sudoma M, Ahmed N, Pecina V (2021) A critical review of the possible adverse effects of biochar in the soil environment. Sci Total Environ 796:148756. https://doi.org/10.1016/j.scitotenv.2021.148756 DOI
Chen D, Liu X, Bian R, Cheng K, Zhang X, Zheng J, Joseph S, Crowley D, Pan G, Li L (2018) Effects of biochar on availability and plant uptake of heavy metals – a meta-analysis. J Environ Manage 222:76–85. https://doi.org/10.1016/j.jenvman.2018.05.004 DOI
Clancy D, Breen JP, Thorne F, Wallace M (2012) A stochastic analysis of the decision to produce biomass crops in Ireland. Biomass Bioenergy 46:353–365. https://doi.org/10.1016/j.biombioe.2012.08.005 DOI
Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, Miscanthus. Glob Change Biol 13:2296–2307. https://doi.org/10.1111/j.1365-2486.2007.01438.x DOI
Cosentino SL, Scordia D, Testa G, Alexopoulou E, Zanetti F, Monti A (2018) 1 - The importance of perennial grasses as a feedstock for bioenergy and bioproducts. In: Alexopoulou E (ed) Perennial grasses for bioenergy and bioproducts. Academic Press, London, UK, pp 1–33. https://doi.org/10.1016/B978-0-12-812900-5.00001-1
Danielewicz D, Dybka-Stępień K, Surma-Ślusarska B (2018) Processing of Miscanthus × giganteus stalks into various soda and kraft pulps. Part I: chemical composition, types of cells and pulping effects. Cellulose 25:6731–6744. https://doi.org/10.1007/s10570-018-2023-9 DOI
DSTU 4115:2002 (2003) Soil. Determination of mobile compounds of phosphorus and potassium by the modified method of Chirikov. DP “UkrNDNC,” Kyiv, Ukraine. Available at: https://www.ukrainelaws.com/p-32952-dstu-4115-2002.aspx . Accessed 8 Mar 2024.
DSTU 4287:2004 (2005) Soil quality. Sampling. DP “UkrNDNC,” Kyiv, Ukraine. Available at: https://www.ukrainelaws.com/p-33142-dstu-42872004.aspx . Accessed 8 Mar 2024.
DSTU 7632:2014 (2014) Greenhouse soils. Method for the determination of organic matter. DP “UkrNDNC,” Kyiv, Ukraine. Available at: https://www.ukrainelaws.com/p-342384-dstu-76322014.aspx . Accessed 8 Dec 2025.
DSTU 7863:2015 (2015) Soil quality. Determination of light hydrolyzed nitrogen by the Kornfield method. DP “UkrNDNC,” Kyiv, Ukraine. Available at: https://www.ukrainelaws.com/p-342556-dstu-78632015.aspx . Accessed 8 Mar 2024.
DSTU 8346:2015 (2015) Soil quality. Methods for the determination of conductivity, pH and dense residue of the aqueous extract. DP “UkrNDNC,” Kyiv, Ukraine. Available at: https://www.ukrainelaws.com/p-342806-dstu-83462015.aspx . Accessed 8 Mar 2024.
DSTU 8347:2015 (2017) Soil quality. Determination of mobile sulfur in the modification NRC Sokolovsky ISSA. DP “UkrNDNC,” Kyiv, Ukraine. Available at: https://www.ukrainelaws.com/p-357486-dstu-8347-2015.aspx . Accessed 8 Mar 2024.
Erickson LE, Pidlisnyuk V (eds) (2021) Phytotechnology with biomass production: sustainable management of contaminated sites, 1
Ghosh D, Maiti SK (2021) Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: a review. Int J Phytoremediation 23:559–576. https://doi.org/10.1080/15226514.2020.1840510 DOI
Grycova B, Pryszcz A, Lestinsky P, Chamradova K (2017) Preparation and characterization of sorbents from food waste. Green Process Synth 6:287–293. https://doi.org/10.1515/gps-2016-0182 DOI
Hansen EM, Christensen BT, Jensen LS, Kristensen K (2004) Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13C abundance. Biomass Bioenergy 26:97–105. https://doi.org/10.1016/S0961-9534(03)00102-8 DOI
He K, He G, Wang C, Zhang H, Xu Y, Wang S, Kong Y, Zhou G, Hu R (2020) Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl Soil Ecol 155:103674. https://doi.org/10.1016/j.apsoil.2020.103674 DOI
He L, Zhong H, Liu G, Dai Z, Brookes PC, Xu J (2019) Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China. Environ Pollut 252:846–855. https://doi.org/10.1016/j.envpol.2019.05.151 DOI
Hilber I, Bastos AC, Loureiro S, Soja G, Marsz A, Cornelissen G, Bucheli TD (2017) The different faces of biochar: contamination risk versus remediation tool. J Environ Eng Landsc Manag 25:86–104. https://doi.org/10.3846/16486897.2016.1254089 DOI
IBI (2015) IBI biochar standards: standardized product definition and product testing. Version 2.1. International Biochar Initiative. Available at: https://biochar-international.org/ . Accessed 8 Mar 2024.
IBI (2022) Biochar classification tool. International Biochar Initiative. Available at: https://biochar-international.org/biochar-classification-tool-interface/ . Accessed 8 Mar 2024
ISO 10390:2021 (2021) Soil quality — soil, treated biowaste and sludge – determination of pH. International Organization for Standardization, Geneva, Switzerland. Available at: https://www.iso.org/standard/75243.html . Accessed 8 Mar 2024.
ISO 11464:2006 (2006) Soil quality — pretreatment of samples for physico-chemical analysis. International Organization for Standardization, Geneva, Switzerland. Available at: https://www.iso.org/standard/37718.html . Accessed 8 Mar 2024.
ISO 11465:1993 (2020) Soil quality — determination of dry matter and water content on a mass basis: gravimetric method. International Organization for Standardization, Geneva, Switzerland. Available at: https://www.iso.org/standard/20886.html . Accessed 8 Mar 2024.
ISO 18400–206:2018 (2018) Soil quality — sampling — part 206: collection, handling, and storage of soil under aerobic conditions for the assessment of microbiological processes, biomass and diversity in the laboratory. International Organization for Standardization, Geneva, Switzerland. Available at: https://www.iso.org/standard/68249.html . Accessed 8 Mar 2024.
ISO/TC 22171:2023 (2023) Soil quality — determination of potential cation exchange capacity (CEC) and exchangeable cations buffered at pH 7, using a molar ammonium acetate solution. International Organization for Standardization, Geneva, Switzerland. Available at: https://www.iso.org/standard/80891.html . Accessed 8 Mar 2024.
IUSS (2022). World reference base for soil resources. International soil classification systems for naming soils and creating legends for soil maps. 4
Kahle P, Beuch S, Boelcke B, Leinweber P, Schulten HR (2001) Cropping of Miscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter. Eur J Agron 15:171–184. https://doi.org/10.1016/S1161-0301(01)00102-2 DOI
Kennen K, Kirkwood N (2015) Phyto: principles and resources for site remediation and landscape design. 1
Khan AHA, Kiyani A, Santiago-Herrera M, Ibáñez J, Yousaf S, Iqbal M, Martel-Martín S, Barros R (2023) Sustainability of phytoremediation: post-harvest stratagems and economic opportunities for the produced metals contaminated biomass. J Environ Manage 326:116700. https://doi.org/10.1016/j.jenvman.2022.116700 DOI
Klemencova K, Grycova B, Lestinsky P (2022) Influence of Miscanthus rhizome pyrolysis operating conditions on products properties. Sustainability 14:6193. https://doi.org/10.3390/su14106193 DOI
Kołodziej B, Antonkiewicz J, Bielińska EJ, Witkowicz R, Dubis B (2023) Recovery of microelements from municipal sewage sludge by reed canary grass and giant Miscanthus. Int J Phytoremediation 25:441–454. https://doi.org/10.1080/15226514.2022.2090495 DOI
Kononchuk O, Pidlisnyuk V, Mamirova A, Khomenchuk V, Herts A, Grycová B, Klemencová K, Leštinský P, Shapoval P (2022) Evaluation of the impact of varied biochars produced from M. × giganteus waste and application rate on the soil properties and physiological parameters of Spinacia oleracea L. Environ Technol Innov 28:102898. https://doi.org/10.1016/j.eti.2022.102898
Korzeniowska J, Stanislawska-Glubiak E (2015) Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals. Environ Sci Pollut Res 22:11648–11657. https://doi.org/10.1007/s11356-015-4439-1 DOI
Krzyżak J, Rusinowski S, Sitko K, Szada-Borzyszkowska A, Stec R, Jensen E, Clifton-Brown J, Kiesel A, Lewin E, Janota P, Pogrzeba M (2023) The effect of different agrotechnical treatments on the establishment of Miscanthus hybrids in soil contaminated with trace metals. Plants 12:98. https://doi.org/10.3390/plants12010098 DOI
Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R (2016) Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environ Int 87:1–12. https://doi.org/10.1016/j.envint.2015.10.018 DOI
Kvak V, Stefanovska T, Pidlisnyuk V, Alasmary Z, Kharytonov M (2018) The long-term assessment of Miscanthus × giganteus cultivation in the Forest-Steppe zone of Ukraine. INMATEH-Agric Eng 54(1):113–120. Available at: https://dspace.dsau.dp.ua/bitstream/123456789/7895/1/54-14%20Kvak.pdf . Assessed 8 Mar 2024.
Laville P, Lehuger S, Loubet B, Chaumartin F, Cellier P (2011) Effect of management, climate and soil conditions on N DOI
Lehmann J, Joseph S (2015) Biochar for environmental management: an introduction. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science, technology and implementation, 2nd edn. Routledge, London, UK, pp 1–14
Lewandowski I, Clifton-Brown J, Trindade LM, van der Linden GC, Schwarz K-U, Müller-Sämann K, Anisimov A, Chen C-L, Dolstra O, Donnison IS, Farrar K, Fonteyne S, Harding G, Hastings A, Huxley LM, Iqbal Y, Khokhlov N, Kiesel A, Lootens P, Meyer H, Mos M, Muylle H, Nunn C, Özgüven M, Roldán-Ruiz I, Schüle H, Tarakanov I, van der Weijde T, Wagner M, Xi Q, Kalinina O (2016) Progress on optimizing Miscanthus biomass production for the European bioeconomy: results of the EU FP7 project OPTIMISC. Front Plant Sci 7:1620. https://doi.org/10.3389/fpls.2016.01620 DOI
Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227. https://doi.org/10.1016/S0961-9534(00)00032-5 DOI
Mamirova A, Pidlisnyuk V (2024) The economic and environmental aspects of Miscanthus × giganteus phytomanagement applied to non-agricultural land. Agronomy 14:791. https://doi.org/10.3390/agronomy14040791 DOI
MECR (2016) Decree no. 153/2016 laying down detailed rules for the protection of quality of agricultural land and amending. Decree specifying some details of agricultural land resources protection. Ministry of the Environment of the Czech Republic (MECR), Czech Republic. Available at: https://www.fao.org/faolex/results/details/ru/c/LEX-FAOC174732/ . Assessed 8 Mar 2024.
Mench M, Schwitzguébel J-P, Schroeder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900. https://doi.org/10.1007/s11356-009-0252-z DOI
Mleczek M, Mocek A, Magdziak Z, Gąsecka M, Mocek-Płóciniak A (2013) Impact of metal/metalloid-contaminated areas on plant growth. In: Gupta DK (ed) Plant-based remediation processes. Springer, Berlin, Heidelberg, pp 79–100
Mocek-Płóciniak A, Mencel J, Zakrzewski W, Roszkowski S (2023) Phytoremediation as an effective remedy for removing trace elements from ecosystems. Plants 12:1653. https://doi.org/10.3390/plants12081653 DOI
Nebeská D, Pidlisnyuk V, Stefanovska T, Trögl J, Shapoval P, Popelka J, Černý J, Medkow A, Kvak V, Malinská H (2019) Impact of plant growth regulators and soil properties on Miscanthus × giganteus biomass parameters and uptake of metals in military soils. Rev Environ Health 34:283–291. https://doi.org/10.1515/reveh-2018-0088 DOI
Nurzhanova A, Pidlisnyuk V, Berzhanova R, Nurmagambetova AS, Terletskaya N, Omirbekova N, Berkinbayev G, Mamirova A (2023) PGPR-driven phytoremediation and physio-biochemical response of Miscanthus × giganteus to stress induced by the trace elements. Environ Sci Pollut Res 30:96098–96113. https://doi.org/10.1007/s11356-023-29031-5 DOI
Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75. https://doi.org/10.5194/se-5-65-2014 DOI
Pidlisnyuk V, Erickson LE, Stefanovska T, Hettiarachchi G, Davis L, Trögl J, Shapoval P (2020a) Response to Grygar (2020) comments on “Potential phytomanagement of military polluted sites and biomass production using biofuel crop Miscanthus × giganteus”- Pidlisnyuk et al. (2019). Environmental pollution 261:113028. https://doi.org/10.1016/j.envpol.2020.115037
Pidlisnyuk V, Mamirova A, Newton RA, Stefanovska T, Zhukov O, Tsygankova V, Shapoval P (2022) The role of plant growth regulators in Miscanthus × giganteus growth on trace elements-contaminated soils. Agronomy 12:2999. https://doi.org/10.3390/agronomy12122999 DOI
Pidlisnyuk V, Newton RA, Mamirova A (2021a) Miscanthus biochar value chain - a review. J Environ Manage 290:112611. https://doi.org/10.1016/j.jenvman.2021.112611 DOI
Pidlisnyuk V, Shapoval P, Zgorelec Ž, Stefanovska T, Zhukov O (2020b) Multiyear phytoremediation and dynamic of foliar metal(loid)s concentration during application of Miscanthus × giganteus Greef et Deu to polluted soil from Bakar, Croatia. Environ Sci Pollut Res 27:31446–31457. https://doi.org/10.1007/s11356-020-09344-5 DOI
Pidlisnyuk V, Stefanovska T, Barbash V, Zelenchuk T (2021b) Characteristics of pulp obtained from Miscanthus × giganteus biomass produced in lead-contaminated soil. Cellul Chem Technol 55:271–280. https://doi.org/10.35812/cellulosechemtechnol.2021.55.27
Pratt K, Moran D (2010) Evaluating the cost-effectiveness of global biochar mitigation potential. Biomass Bioenergy 34:1149–1158. https://doi.org/10.1016/j.biombioe.2010.03.004 DOI
Priya AK, Muruganandam M, Ali SS, Kornaros M (2023) Clean-up of heavy metals from contaminated soil by phytoremediation: a multidisciplinary and eco-friendly approach. Toxics 11:422. https://doi.org/10.3390/toxics11050422 DOI
Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385. https://doi.org/10.1016/j.envint.2019.01.067 DOI
Robb DA, Pierpoint WS (eds) (2013) Metals and micronutrients: uptake and utilization by plants. Academic Press, London, UK, 341 pp. ISBN 978–0–12–590655–5.
Rodriguez-Franco C, Page-Dumroese DS (2021) Woody biochar potential for abandoned mine land restoration in the U.S.: a review. Biochar 3:7–22. https://doi.org/10.1007/s42773-020-00074-y DOI
Schwitzguébel J-P, van der Lelie D, Baker A, Glass DJ, Vangronsveld J (2002) Phytoremediation: European and American trends successes, obstacles and needs. J Soils Sediments 2:91–99. https://doi.org/10.1007/BF02987877 DOI
Šekler I, Vještica S, Janković V, Stefanović S, Ristić V (2021) Miscanthus × giganteus as a building material - lightweight concrete: technical paper. Hem Ind Chem Ind 75:147–154. https://doi.org/10.2298/HEMIND201116013S DOI
Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) Chapter 2 - a review of biochar and its use and function in soil. Advances in Agronomy, 105:47–82. https://doi.org/10.1016/S0065-2113(10)05002-9
Song U, Park H (2017) Importance of biomass management acts and policies after phytoremediation. J Ecol Environ 41:13. https://doi.org/10.1186/s41610-017-0033-4 DOI
Spokas KA, Cantrell KB, Novak JM, Archer DW, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KA (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 41:973–989. https://doi.org/10.2134/jeq2011.0069 DOI
Stefanovska T, Skwiercz A, Pidlisnyuk V, Zhukov O, Shapoval P (2023) Can nematode communities work as an indicator of soil health in a multiyear Miscanthus × giganteus plantation growing in lead-contaminated soil? Agronomy 13:1620. https://doi.org/10.3390/agronomy13061620 DOI
Stefanovska T, Skwiercz A, Pidlisnyuk V, Zhukov O, Kozacki D, Mamirova A, Newton RA, Ust’ak S, (2022) The short-term effects of amendments on nematode communities and diversity patterns under the cultivation of Miscanthus × giganteus on marginal land. Agronomy 12:2063. https://doi.org/10.3390/agronomy12092063 DOI
Sterckeman T, Douay F, Proix N, Fourrier H, Perdrix E (2002) Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water Air Soil Pollut 135:173–194. https://doi.org/10.1023/A:1014758811194 DOI
Sudhakaran M, Ramamoorthy D, Savitha V, Balamurugan S (2018) Assessment of trace elements and its influence on physico-chemical and biological properties in coastal agroecosystem soil, Puducherry region. Geol Ecol Landsc 2:169–176. https://doi.org/10.1080/24749508.2018.1452475 DOI
Sun W, Zhang S, Su C (2018) Impact of biochar on the bioremediation and phytoremediation of heavy metal(loid)s in soil. In: Shiomi N (ed) Advances in bioremediation and phytoremediation. InTech, Rijeka, Croatia, pp 149–168. ISBN 978–953–51–3957–7. https://doi.org/10.5772/intechopen.70349
Tan HW, Pang YL, Lim S, Chong WC (2023) A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environ Technol Innov 30:103043. https://doi.org/10.1016/j.eti.2023.103043 DOI
Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80:623–633. https://doi.org/10.1111/j.1469-8137.1978.tb01595.x DOI
Xu C, Tan X, Zhao J, Cao J, Ren M, Xiao Y, Lin A (2021) Optimization of biochar production based on environmental risk and remediation performance: take kitchen waste for example. J Hazard Mater 416:125785. https://doi.org/10.1016/j.jhazmat.2021.125785 DOI
Yaashikaa PR, Senthil Kumar P, Varjani SJ, Saravanan A (2019) Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresour Technol 292:122030. https://doi.org/10.1016/j.biortech.2019.122030 DOI
Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359. https://doi.org/10.3389/fpls.2020.00359 DOI
Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environ Int 31:755–762. https://doi.org/10.1016/j.envint.2005.02.004 DOI
Yao B, Zhou Y (2022) Chapter 29 - Biochars’ potential role in the remediation, revegetation, and restoration of contaminated soils. In: Tsang DCW, Ok YS (eds) Biochar in agriculture for achieving sustainable development goals. Academic Press, London, UK, pp 381–399
Yuan P, Wang J, Pan Y, Shen B, Wu C (2019) Review of biochar for the management of contaminated soil: preparation, application, and prospect. Sci Total Environ 659:473–490. https://doi.org/10.1016/j.scitotenv.2018.12.400 DOI
Zákon č. 334/1992 Sb. (1992) 334/1992 Sb. Zákon o ochraně zemědělského půdního fondu [Law No. 334/1992 Sb., on the protection of agricultural land resources]. Available at: https://www.zakonyprolidi.cz/cs/1992-334 . Assessed 8 Mar 2024.
Zayed A, Gowthaman S, Terry N (1998) Phytoaccumulation of trace elements by wetland plants: I. Duckweed J Environ Qual 27:715–721. https://doi.org/10.2134/jeq1998.00472425002700030032x DOI
Zhao X, Liu J, Xia X, Chu J, Wei Y, Shi S, Chang E, Yin W, Jiang Z (2014) The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China. Environ Sci Pollut Res 21:5076–5085. https://doi.org/10.1007/s11356-013-2393-3 DOI