Effects of decreased specific glutathione reductase activity in a chromate-tolerant mutant of Schizosaccharomyces pombe
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
- MeSH
- chromany metabolismus farmakologie MeSH
- down regulace * MeSH
- fungální léková rezistence MeSH
- glutathionreduktasa genetika metabolismus MeSH
- mutace * MeSH
- oxidace-redukce MeSH
- proteiny asociované s pankreatitidou MeSH
- Schizosaccharomyces pombe - proteiny genetika metabolismus MeSH
- Schizosaccharomyces účinky léků enzymologie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromany MeSH
- glutathionreduktasa MeSH
- proteiny asociované s pankreatitidou MeSH
- REG3A protein, human MeSH Prohlížeč
- Schizosaccharomyces pombe - proteiny MeSH
A chromate-tolerant mutant chr1-663T bearing a stable one-gene mutation and its parental strain 6chr(+) were used to investigate the background of Cr(VI) tolerance in the fission yeast Schizosaccharomyces pombe. The mutant chr1-663T displayed a significantly decreased specific glutathione reductase (GR) activity coded by the pgr1 (+) gene compared with its parental strain. Transformants of the mutant chr1-663T with a nonintegrative pUR18N vector expressing the pgr1 (+) gene exhibited the same Cr(VI) sensitivity and specific GR activity as their parental strain, demonstrating the importance of the GR-NADPH system in Cr(VI) tolerance. Transformants, nevertheless, exhibited an increased intracellular peroxide concentration, a decreased Cr(VI)-reducing and HO*-producing ability, which suggested an unbalanced oxidoreduction state of cells and partial complementation of the GR function. No mutation was found in the sequences of the pgr1 (+) and the pap1 (+) (transcriptional regulatory gene of GR) genes of the Cr(VI)-tolerant mutant by sequence analysis.
Zobrazit více v PubMed
Arch Biochem Biophys. 1984 Jan;228(1):1-12 PubMed
Sabouraudia. 1981 Mar;19(1):17-26 PubMed
Mol Genet Genomics. 2004 Mar;271(2):161-70 PubMed
Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8 PubMed
Biochim Biophys Acta. 2003 Apr 1;1611(1-2):217-22 PubMed
Mutat Res. 2005 Jan 6;569(1-2):13-27 PubMed
Mol Biol Cell. 2003 Jan;14(1):214-29 PubMed
Biochim Biophys Acta. 1987 Oct 22;931(1):10-5 PubMed
Arch Biochem Biophys. 1990 Aug 15;281(1):90-5 PubMed
Arch Biochem Biophys. 1992 Jan;292(1):323-7 PubMed
Yeast. 1998 Dec;14(16):1511-27 PubMed
Carcinogenesis. 1992 Feb;13(2):307-8 PubMed
Biochim Biophys Acta. 1999 Sep 21;1421(1):175-82 PubMed
Folia Microbiol (Praha). 2006;51(2):99-107 PubMed
Environ Res. 1998 Jul;78(1):7-11 PubMed
Folia Microbiol (Praha). 1999;44(6):587-624 PubMed
Folia Microbiol (Praha). 2006;51(5):406-12 PubMed
Nucleic Acids Res. 1990 Nov 25;18(22):6485-9 PubMed
Crit Rev Toxicol. 1993;23(3):255-81 PubMed
Gene. 1992 May 1;114(1):59-66 PubMed
Mol Aspects Med. 2001 Aug-Oct;22(4-5):217-46 PubMed
Carcinogenesis. 2000 Apr;21(4):533-41 PubMed
Eur J Biochem. 1993 Nov 1;217(3):973-80 PubMed
FEMS Microbiol Lett. 1999 Sep 1;178(1):109-15 PubMed
J Toxicol Environ Health B Crit Rev. 1999 Jan-Mar;2(1):87-104 PubMed
J Basic Microbiol. 2002;42(6):408-19 PubMed
FEMS Microbiol Rev. 2001 May;25(3):335-47 PubMed
Folia Microbiol (Praha). 2007;52(2):120-6 PubMed
J Basic Microbiol. 2003;43(2):96-103 PubMed
FEMS Microbiol Lett. 2000 Jan 15;182(2):375-80 PubMed
Folia Microbiol (Praha). 2004;49(1):31-6 PubMed
FEBS Lett. 1974 May 1;41(2):283-6 PubMed
Folia Microbiol (Praha). 2007;52(3):237-40 PubMed
J Inorg Biochem. 1990 Sep;40(1):1-12 PubMed
J Biol Chem. 1997 Sep 12;272(37):23042-9 PubMed
J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed
Hexavalent molybdenum reduction to Mo-blue by Acinetobacter calcoaceticus