Characterization of chromate-sensitive and -tolerant mutants of Schizosaccharomyces pombe
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
15114862
DOI
10.1007/bf02931642
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- antifungální látky metabolismus farmakologie MeSH
- biologický transport MeSH
- chrom metabolismus farmakologie MeSH
- dominantní geny MeSH
- fungální léková rezistence genetika MeSH
- geny hub MeSH
- kinetika MeSH
- kovy metabolismus MeSH
- křížení genetické MeSH
- mikrobiální testy citlivosti MeSH
- mutace MeSH
- počet mikrobiálních kolonií MeSH
- rekombinace genetická MeSH
- Schizosaccharomyces účinky léků genetika růst a vývoj metabolismus MeSH
- testy genetické komplementace MeSH
- transformace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antifungální látky MeSH
- chrom MeSH
- chromium hexavalent ion MeSH Prohlížeč
- kovy MeSH
Stable chromium(VI)-sensitive and -tolerant mutants were obtained by induced mutagenesis of Schizosaccharomyces pombe lysine and leucine auxotrophic heterothallic strains 6chr+ and 9chr+. Eleven of them were selected for further studies. Fast transport of 51CrO4(2-) was detected in a representative sensitive mutant, chr-51S, while the tolerant mutant chr1-66T and the parental strain 6chr+ exhibited significantly lower 51CrO4(2-) uptake. The segregation of tetrads of three selected CrVI-tolerant mutants, chr1-66T, chr1-14T and chr2-04T, strongly indicated that tolerance was determined by single mutations. Random spore analysis proved that the mutations of chr1-66T and chr1-14T were allelic and the mutation of mutant chr2-04T was not allelic with the mutation of chr1-66T. Recombinants carrying the ura4D18 selective marker were created for transformation experiments. Two of them (chr1-661T and chr2-046T) can be used to clone and identify the genes responsible for their CrVI tolerance phenotype.
Zobrazit více v PubMed
J Appl Toxicol. 1993 May-Jun;13(3):217-24 PubMed
Sabouraudia. 1981 Mar;19(1):17-26 PubMed
Methods Enzymol. 1991;194:795-823 PubMed
Yeast. 1999 Mar 30;15(5):385-96 PubMed
Acta Microbiol Immunol Hung. 2000;47(2-3):143-73 PubMed
Carcinogenesis. 2000 Apr;21(4):533-41 PubMed
Biol Trace Elem Res. 1989 Jul-Sep;21:61-71 PubMed
Curr Genet. 1982 Oct;6(1):71-7 PubMed
Biochim Biophys Acta. 1981 Dec;650(2-3):88-127 PubMed
Free Radic Biol Med. 1995 Feb;18(2):321-36 PubMed
J Cell Sci. 1990 Nov;97 ( Pt 3):509-16 PubMed
Curr Genet. 1992 Apr;21(4-5):275-80 PubMed
J Toxicol Clin Toxicol. 1999;37(2):173-94 PubMed
Biometals. 1998 Apr;11(2):101-6 PubMed
FEMS Microbiol Lett. 1999 Jul 15;176(2):379-86 PubMed
Biochim Biophys Acta. 1999 Sep 21;1421(1):175-82 PubMed
Arch Toxicol. 1985 Apr;57(1):31-4 PubMed
Crit Rev Toxicol. 1993;23(3):255-81 PubMed
Gene. 1992 May 1;114(1):59-66 PubMed
FEMS Microbiol Lett. 1999 Sep 1;178(1):109-15 PubMed
J Toxicol Environ Health B Crit Rev. 1999 Jan-Mar;2(1):87-104 PubMed
Mutat Res. 1976 Apr;38(2):147-50 PubMed
J Basic Microbiol. 2002;42(6):408-19 PubMed
FEMS Microbiol Rev. 2001 May;25(3):335-47 PubMed
Adv Appl Microbiol. 2001;49:111-42 PubMed
J Basic Microbiol. 2003;43(2):96-103 PubMed
FEMS Microbiol Lett. 2000 Jan 15;182(2):375-80 PubMed
Appl Environ Microbiol. 1990 Apr;56(4):913-8 PubMed
Yeast. 1998 Dec;14(16):1511-27 PubMed