Protective role of mitochondrial superoxide dismutase against high osmolarity, heat and metalloid stress in saccharomyces cerevisiae

. 2007 ; 52 (2) : 120-6.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17575910

Superoxide dismutases, both cytosolic Cu, Zn-SOD encoded by SOD1 and mitochondrial Mn-SOD encoded by SOD2, serve Saccharomyces cerevisiae cells for defense against the superoxide radical but the phenotypes of sod1A and sod2delta mutant strains are different. Compared with the parent strain and the sod1delta mutant, the sod2delta mutant shows a much more severe growth defect at elevated salt concentrations, which is partially rescued by 2 mmol/L glutathione. The growth of all three strains is reduced at 37 degrees C, the sod2delta showing the highest sensitivity, especially when cultured in air. Addition of 1 mmol/L glutathione to the medium restores aerobic growth of the sod1delta mutant but has only a minor effect on the growth of the sod2delta strain at 37 degrees C. The sod2delta strain is also sensitive to AsIIl and AsV and its sensitivity is much more pronounced under aerobic conditions. These results suggest that, unlike the Sodlp protein, whose major role is oxidative stress defense, Sod2p also plays a role in protecting S. cerevisiae cells against other stresses--high osmolarity, heat and metalloid stress.

Zobrazit více v PubMed

Eukaryot Cell. 2005 Aug;4(8):1396-402 PubMed

Yeast. 1997 Jul;13(9):819-28 PubMed

Genetics. 2003 Jan;163(1):35-46 PubMed

Biochem Biophys Res Commun. 2003 May 2;304(2):293-300 PubMed

J Biochem Mol Toxicol. 2004;18(1):12-7 PubMed

Adv Genet. 1992;30:251-319 PubMed

FEMS Microbiol Lett. 1995 Dec 15;134(2-3):121-7 PubMed

Nucleic Acids Res. 1996 Jul 1;24(13):2519-24 PubMed

Adv Appl Microbiol. 2001;49:111-42 PubMed

J Biol Chem. 2001 Oct 12;276(41):38084-9 PubMed

Yeast. 1998 Dec;14(16):1511-27 PubMed

J Biol Chem. 2004 Jul 30;279(31):32055-62 PubMed

Mutat Res. 1996 Sep 23;356(2):171-8 PubMed

Folia Microbiol (Praha). 1999;44(6):657-62 PubMed

Folia Microbiol (Praha). 2006;51(2):99-107 PubMed

Folia Microbiol (Praha). 1999;44(6):587-624 PubMed

Methods Enzymol. 2002;349:167-72 PubMed

J Biol Chem. 1996 May 24;271(21):12275-80 PubMed

Mol Microbiol. 1997 Jan;23(2):303-12 PubMed

EMBO J. 1999 Jun 15;18(12):3325-33 PubMed

J Bacteriol. 1983 Jan;153(1):163-8 PubMed

Folia Microbiol (Praha). 2000;45(6):509-14 PubMed

Yeast. 2003 Aug;20(11):929-41 PubMed

Free Radic Biol Med. 2003 Feb 1;34(3):385-93 PubMed

Microbiology (Reading). 1997 May;143 ( Pt 5):1649-1656 PubMed

Biochem Biophys Res Commun. 2001 May 18;283(4):908-14 PubMed

Microbiology (Reading). 2002 Nov;148(Pt 11):3705-3713 PubMed

J Biol Chem. 2000 May 19;275(20):15535-40 PubMed

Biochim Biophys Acta. 2003 Mar 17;1620(1-3):245-51 PubMed

Mol Biol Cell. 2004 May;15(5):2049-60 PubMed

Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8558-62 PubMed

J Biol Chem. 1987 Dec 15;262(35):16871-9 PubMed

Yeast. 1991 Aug-Sep;7(6):609-15 PubMed

Folia Microbiol (Praha). 2003;48(6):754-60 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...