Protective role of mitochondrial superoxide dismutase against high osmolarity, heat and metalloid stress in saccharomyces cerevisiae
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17575910
DOI
10.1007/bf02932150
Knihovny.cz E-zdroje
- MeSH
- aerobióza MeSH
- arsen MeSH
- chlorid sodný MeSH
- glutathion farmakologie MeSH
- kultivační média MeSH
- mitochondrie enzymologie MeSH
- osmolární koncentrace MeSH
- Saccharomyces cerevisiae - proteiny fyziologie MeSH
- Saccharomyces cerevisiae účinky léků fyziologie MeSH
- superoxid dismutáza 1 MeSH
- superoxiddismutasa fyziologie MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arsen MeSH
- chlorid sodný MeSH
- glutathion MeSH
- kultivační média MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- superoxid dismutáza 1 MeSH
- superoxiddismutasa MeSH
- superoxide dismutase 2 MeSH Prohlížeč
Superoxide dismutases, both cytosolic Cu, Zn-SOD encoded by SOD1 and mitochondrial Mn-SOD encoded by SOD2, serve Saccharomyces cerevisiae cells for defense against the superoxide radical but the phenotypes of sod1A and sod2delta mutant strains are different. Compared with the parent strain and the sod1delta mutant, the sod2delta mutant shows a much more severe growth defect at elevated salt concentrations, which is partially rescued by 2 mmol/L glutathione. The growth of all three strains is reduced at 37 degrees C, the sod2delta showing the highest sensitivity, especially when cultured in air. Addition of 1 mmol/L glutathione to the medium restores aerobic growth of the sod1delta mutant but has only a minor effect on the growth of the sod2delta strain at 37 degrees C. The sod2delta strain is also sensitive to AsIIl and AsV and its sensitivity is much more pronounced under aerobic conditions. These results suggest that, unlike the Sodlp protein, whose major role is oxidative stress defense, Sod2p also plays a role in protecting S. cerevisiae cells against other stresses--high osmolarity, heat and metalloid stress.
Zobrazit více v PubMed
Eukaryot Cell. 2005 Aug;4(8):1396-402 PubMed
Yeast. 1997 Jul;13(9):819-28 PubMed
Genetics. 2003 Jan;163(1):35-46 PubMed
Biochem Biophys Res Commun. 2003 May 2;304(2):293-300 PubMed
J Biochem Mol Toxicol. 2004;18(1):12-7 PubMed
Adv Genet. 1992;30:251-319 PubMed
FEMS Microbiol Lett. 1995 Dec 15;134(2-3):121-7 PubMed
Nucleic Acids Res. 1996 Jul 1;24(13):2519-24 PubMed
Adv Appl Microbiol. 2001;49:111-42 PubMed
J Biol Chem. 2001 Oct 12;276(41):38084-9 PubMed
Yeast. 1998 Dec;14(16):1511-27 PubMed
J Biol Chem. 2004 Jul 30;279(31):32055-62 PubMed
Mutat Res. 1996 Sep 23;356(2):171-8 PubMed
Folia Microbiol (Praha). 1999;44(6):657-62 PubMed
Folia Microbiol (Praha). 2006;51(2):99-107 PubMed
Folia Microbiol (Praha). 1999;44(6):587-624 PubMed
Methods Enzymol. 2002;349:167-72 PubMed
J Biol Chem. 1996 May 24;271(21):12275-80 PubMed
Mol Microbiol. 1997 Jan;23(2):303-12 PubMed
EMBO J. 1999 Jun 15;18(12):3325-33 PubMed
J Bacteriol. 1983 Jan;153(1):163-8 PubMed
Folia Microbiol (Praha). 2000;45(6):509-14 PubMed
Yeast. 2003 Aug;20(11):929-41 PubMed
Free Radic Biol Med. 2003 Feb 1;34(3):385-93 PubMed
Microbiology (Reading). 1997 May;143 ( Pt 5):1649-1656 PubMed
Biochem Biophys Res Commun. 2001 May 18;283(4):908-14 PubMed
Microbiology (Reading). 2002 Nov;148(Pt 11):3705-3713 PubMed
J Biol Chem. 2000 May 19;275(20):15535-40 PubMed
Biochim Biophys Acta. 2003 Mar 17;1620(1-3):245-51 PubMed
Mol Biol Cell. 2004 May;15(5):2049-60 PubMed
Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8558-62 PubMed
J Biol Chem. 1987 Dec 15;262(35):16871-9 PubMed
Yeast. 1991 Aug-Sep;7(6):609-15 PubMed
Folia Microbiol (Praha). 2003;48(6):754-60 PubMed