Increased oxidative stress tolerance results in general stress tolerance in Candida albicans independently of stress-elicited morphological transitions

. 2014 Jul ; 59 (4) : 333-40. [epub] 20140130

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24477890

A selection of tert-butylhydroperoxide (tBOOH)-tolerant Candida albicans mutants showed increased tolerances to 19 different stress conditions. These mutants are characterized by a constitutively upregulated antioxidative defense system and, therefore, adaptation to oxidative stress may play an important role in gaining general stress tolerance in C. albicans. Although C. albicans cells may undergo morphological transitions under various stress treatments, this ability shows considerable stress-specific and strain-specific variability and, hence, it is independent of mounting stress cross protections.

Zobrazit více v PubMed

Microbiology (Reading). 2005 Apr;151(Pt 4):1033-1049 PubMed

Trends Microbiol. 2004 Jul;12(7):317-24 PubMed

Bioresour Technol. 2011 Jul;102(14):7232-5 PubMed

Arch Biochem Biophys. 1998 Nov 1;359(1):99-106 PubMed

J Biol Chem. 2011 Dec 9;286(49):42002-42016 PubMed

Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14327-32 PubMed

EMBO J. 1994 Sep 15;13(18):4382-9 PubMed

FEMS Yeast Res. 2010 Sep;10(6):747-56 PubMed

Mol Microbiol. 2003 Mar;47(6):1523-43 PubMed

PLoS One. 2012;7(12):e52850 PubMed

Curr Drug Targets. 2005 Dec;6(8):863-74 PubMed

Mol Cells. 2012 Feb;33(2):183-93 PubMed

Microbiology (Reading). 2002 Aug;148(Pt 8):2599-2606 PubMed

Mutat Res. 1996 Sep 23;356(2):171-8 PubMed

Free Radic Res. 2005 Apr;39(4):365-71 PubMed

Eukaryot Cell. 2008 Nov;7(11):2008-11 PubMed

Eukaryot Cell. 2006 Feb;5(2):347-58 PubMed

Mol Microbiol. 2005 Apr;56(2):397-415 PubMed

FEMS Microbiol Rev. 2000 Oct;24(4):469-86 PubMed

J Bacteriol. 1999 May;181(10):3058-68 PubMed

Biochem J. 2008 Sep 1;414(2):301-11 PubMed

J Bacteriol. 1996 Oct;178(19):5850-2 PubMed

Mol Biol Cell. 2004 Sep;15(9):4179-90 PubMed

Fungal Genet Biol. 2009 Nov;46(11):868-78 PubMed

Antonie Van Leeuwenhoek. 2011 May;99(4):761-71 PubMed

Redox Rep. 2011;16(1):15-23 PubMed

J Gen Microbiol. 1993 Mar;139(3):501-7 PubMed

Mol Cell Biol. 2010 Oct;30(19):4550-63 PubMed

J Gen Microbiol. 1992 Feb;138(2):329-335 PubMed

Eukaryot Cell. 2013 Mar;12(3):438-49 PubMed

Eukaryot Cell. 2011 Feb;10(2):272-5 PubMed

Microbiology (Reading). 2006 Apr;152(Pt 4):905-912 PubMed

Virulence. 2012 May 1;3(3):251-61 PubMed

J Biol Chem. 1998 Sep 4;273(36):22921-8 PubMed

FEBS Lett. 2010 Mar 19;584(6):1245-50 PubMed

PLoS Pathog. 2012 Dec;8(12):e1003069 PubMed

Mol Biol Cell. 2011 Nov;22(22):4435-46 PubMed

FEMS Yeast Res. 2006 Dec;6(8):1140-8 PubMed

Folia Microbiol (Praha). 2007;52(2):120-6 PubMed

Proc Natl Acad Sci U S A. 1996 May 14;93(10):5116-21 PubMed

Mol Microbiol. 2002 Nov;46(3):869-78 PubMed

PLoS Genet. 2011 Nov;7(11):e1002353 PubMed

Mol Biol Cell. 2006 Feb;17(2):1018-32 PubMed

Biochem Biophys Res Commun. 2003 Jul 25;307(2):308-14 PubMed

Eukaryot Cell. 2003 Apr;2(2):351-61 PubMed

Eukaryot Cell. 2007 Oct;6(10):1876-88 PubMed

J Basic Microbiol. 2008 Dec;48(6):480-7 PubMed

Yeast. 2007 Nov;24(11):961-76 PubMed

Biochem J. 2000 Nov 15;352 Pt 1:71-8 PubMed

FEMS Microbiol Lett. 1996 Apr 15;138(1):83-8 PubMed

FEMS Yeast Res. 2007 Sep;7(6):834-47 PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...