Increased oxidative stress tolerance results in general stress tolerance in Candida albicans independently of stress-elicited morphological transitions
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Antioxidants physiology MeSH
- Candida albicans genetics physiology ultrastructure MeSH
- Microscopy, Fluorescence MeSH
- Adaptation, Physiological genetics physiology MeSH
- Microscopy, Phase-Contrast MeSH
- Mutation genetics physiology MeSH
- Oxidative Stress genetics physiology MeSH
- Up-Regulation genetics physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antioxidants MeSH
A selection of tert-butylhydroperoxide (tBOOH)-tolerant Candida albicans mutants showed increased tolerances to 19 different stress conditions. These mutants are characterized by a constitutively upregulated antioxidative defense system and, therefore, adaptation to oxidative stress may play an important role in gaining general stress tolerance in C. albicans. Although C. albicans cells may undergo morphological transitions under various stress treatments, this ability shows considerable stress-specific and strain-specific variability and, hence, it is independent of mounting stress cross protections.
See more in PubMed
Microbiology (Reading). 2005 Apr;151(Pt 4):1033-1049 PubMed
Trends Microbiol. 2004 Jul;12(7):317-24 PubMed
Bioresour Technol. 2011 Jul;102(14):7232-5 PubMed
Arch Biochem Biophys. 1998 Nov 1;359(1):99-106 PubMed
J Biol Chem. 2011 Dec 9;286(49):42002-42016 PubMed
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14327-32 PubMed
EMBO J. 1994 Sep 15;13(18):4382-9 PubMed
FEMS Yeast Res. 2010 Sep;10(6):747-56 PubMed
Mol Microbiol. 2003 Mar;47(6):1523-43 PubMed
PLoS One. 2012;7(12):e52850 PubMed
Curr Drug Targets. 2005 Dec;6(8):863-74 PubMed
Mol Cells. 2012 Feb;33(2):183-93 PubMed
Microbiology (Reading). 2002 Aug;148(Pt 8):2599-2606 PubMed
Mutat Res. 1996 Sep 23;356(2):171-8 PubMed
Free Radic Res. 2005 Apr;39(4):365-71 PubMed
Eukaryot Cell. 2008 Nov;7(11):2008-11 PubMed
Eukaryot Cell. 2006 Feb;5(2):347-58 PubMed
Mol Microbiol. 2005 Apr;56(2):397-415 PubMed
FEMS Microbiol Rev. 2000 Oct;24(4):469-86 PubMed
J Bacteriol. 1999 May;181(10):3058-68 PubMed
Biochem J. 2008 Sep 1;414(2):301-11 PubMed
J Bacteriol. 1996 Oct;178(19):5850-2 PubMed
Mol Biol Cell. 2004 Sep;15(9):4179-90 PubMed
Fungal Genet Biol. 2009 Nov;46(11):868-78 PubMed
Antonie Van Leeuwenhoek. 2011 May;99(4):761-71 PubMed
Redox Rep. 2011;16(1):15-23 PubMed
J Gen Microbiol. 1993 Mar;139(3):501-7 PubMed
Mol Cell Biol. 2010 Oct;30(19):4550-63 PubMed
J Gen Microbiol. 1992 Feb;138(2):329-335 PubMed
Eukaryot Cell. 2013 Mar;12(3):438-49 PubMed
Eukaryot Cell. 2011 Feb;10(2):272-5 PubMed
Microbiology (Reading). 2006 Apr;152(Pt 4):905-912 PubMed
Virulence. 2012 May 1;3(3):251-61 PubMed
J Biol Chem. 1998 Sep 4;273(36):22921-8 PubMed
FEBS Lett. 2010 Mar 19;584(6):1245-50 PubMed
PLoS Pathog. 2012 Dec;8(12):e1003069 PubMed
Mol Biol Cell. 2011 Nov;22(22):4435-46 PubMed
FEMS Yeast Res. 2006 Dec;6(8):1140-8 PubMed
Folia Microbiol (Praha). 2007;52(2):120-6 PubMed
Proc Natl Acad Sci U S A. 1996 May 14;93(10):5116-21 PubMed
Mol Microbiol. 2002 Nov;46(3):869-78 PubMed
PLoS Genet. 2011 Nov;7(11):e1002353 PubMed
Mol Biol Cell. 2006 Feb;17(2):1018-32 PubMed
Biochem Biophys Res Commun. 2003 Jul 25;307(2):308-14 PubMed
Eukaryot Cell. 2003 Apr;2(2):351-61 PubMed
Eukaryot Cell. 2007 Oct;6(10):1876-88 PubMed
J Basic Microbiol. 2008 Dec;48(6):480-7 PubMed
Yeast. 2007 Nov;24(11):961-76 PubMed
Biochem J. 2000 Nov 15;352 Pt 1:71-8 PubMed
FEMS Microbiol Lett. 1996 Apr 15;138(1):83-8 PubMed
FEMS Yeast Res. 2007 Sep;7(6):834-47 PubMed