Interannual adjustments in stomatal and leaf morphological traits of European beech (Fagus sylvatica L.) demonstrate its climate change acclimation potential

. 2022 Dec ; 24 (7) : 1287-1296. [epub] 20220302

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35238138

Grantová podpora
VEGA 1/0535/20 Agentúra Ministerstva školstva, vedy, výskumu a športu SR
APVV-18-0390 Agentúra na Podporu Výskumu a Vývoja
MZE-RO0118 Národní Agentura pro Zemědělsk Vzkum
LM2018123 Ministerstvo Školství, Mládeže a Tělovýchovy

The current projections of climate change might exceed the ability of European forest trees to adapt to upcoming environmental conditions. However, stomatal and leaf morphological traits could greatly influence the acclimation potential of forest tree species subjected to global warming, including the single most important forestry species in Europe, European beech. We analysed stomatal (guard cell length, stomatal density and potential conductance index) and leaf (leaf area, leaf dry weight and leaf mass per area) morphological traits of ten provenances from two provenance trials with contrasting climates between 2016 and 2020. The impact of meteorological conditions of the current and preceding year on stomatal and leaf traits was tested by linear and quadratic regressions. Ecodistance was used to capture the impact of adaptation after the transfer of provenances to new environments. Interactions of trial-provenance and trial-year factors were significant for all measured traits. Guard cell length was lowest and stomatal density was highest across beech provenances in the driest year, 2018. Adaptation was also reflected in a significant relationship between aridity ecodistance and measured traits. Moreover, the meteorological conditions of the preceding year affected the interannual variability of stomatal and leaf traits more than the meteorological conditions of the spring of the current year, suggesting the existence of plant stress memory. High intraspecific variability of stomatal and leaf traits controlled by the interaction of adaptation, acclimation and plant memory suggests a high acclimation potential of European beech provenances under future conditions of global climate change.

Zobrazit více v PubMed

Aranda I., Cano F.J., Gasco A., Cochard H., Nardini A., Mancha J.A., et al. (2015) Variation in photosynthetic performance and hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress. Tree Physiology, 35, 34-46.

Avramova Z. (2015) Transcriptional ‘memory’ of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. The Plant Journal, 83, 149-159.

Backhaus S., Kreyling J., Grant K., Beierkuhnlein C., Walter J., Jentsch A. (2014) Recurrent mild drought events increase resistance toward extreme drought stress. Ecosystems, 17, 1068-1081.

Bertolino L.T., Caine R.S., Gray J.E. (2019) Impact of stomatal density and morphology on water-use efficiency in a changing world. Frontiers in Plant Science, 10, 225.

Bresson C.C., Vitasse Y., Kremer A., Delzon S. (2011) To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiology, 31, 1164-1174.

Brodribb T.J., McAdam S., Carins Murphy M.R. (2017) Xylem and stomata, coordinated through time and space: functional linkages between xylem and stomata. Plant, Cell & Environment, 40, 872-880.

Bruce T.J., Matthes M.C., Napier J.A., Pickett J.A. (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Science, 173, 603-608.

Buckley T.N. (2005) The control of stomata by water balance. New Phytologist, 168, 275-292.

Carneros E., Yakovlev I., Viejo M., Olsen J.E., Fossdal C.G. (2017) The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes. Planta, 246, 553-566.

Cavin L., Jump A.S. (2017) Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Global Change Biology, 23, 362-379.

Cheval S., Dumitrescu A., Birsan M.V. (2017) Variability of the aridity in the South-Eastern Europe over 1961-2050. Catena, 151, 74-86.

Chmura D.J., Rożkowski R. (2002) Variability of beech provenances in spring and autumn phenology. Silvae Genetica, 51, 123-127.

Choat B., Brodribb T.J., Brodersen C.R., Duursma R.A., López R., Medlyn B.E. (2018) Triggers of tree mortality under drought. Nature, 558, 531-539.

Conrath U. (2011) Molecular aspects of defence priming. Trends in Plant Science, 16, 524-531.

Ding Y., Fromm M., Avramova Z. (2012) Multiple exposures to drought train transcriptional responses in Arabidopsis. Nature Communications, 3, 1-9.

Dziedek C., Fichtner A., Calvo L., Marcos E., Jansen K., Kunz M., et al. (2017) Phenotypic plasticity explains response patterns of European beech (Fagus sylvatica L.) saplings to nitrogen fertilization and drought events. Forests, 8, 91.

Ellenberg H. (1988) Vegetation ecology of Central Europe. Cambridge University Press, Cambridge, UK.

Farooq M., Wahid A., Kobayashi N.S.M.A., Fujita D.B.S.M.A., Basra S.M.A. (2009) Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Agriculture, 29, 153-188.

Fleta-Soriano E., Munné-Bosch S. (2016) Stress memory and the inevitable effects of drought: a physiological perspective. Frontiers in Plant Science, 7, 143.

de Freitas A., Guedes F., Menezes-Silva P.E., DaMatta F.M., Alves-Ferreira M. (2019) Using transcriptomics to assess plant stress memory. Theoretical and Experimental Plant Physiology, 31, 47-58.

Führer E., Horváth L., Jagodics A., Machon A., Pödör Z. (2011) Application of a new aridity index in Hungarian forestry practice. Idojaras, 3, 205-216.

Gárate-Escamilla H., Hampe A., Vizcaíno-Palomar N., Robson T.M., Benito G.M. (2019) Range-wide variation in local adaptation and phenotypic plasticity of fitness-related traits in Fagus sylvatica and their implications under climate change. Global Ecology and Biogeography, 28, 1336-1350.

Gavrilov M.B., Lukić T., Janc N., Basarin B., Marković S.B. (2019) Forestry aridity index in Vojvodina, North Serbia. Open Geosciences, 11, 367-377.

Gebauer R., Plichta R., Urban J., Volařík D., Hájíčková M. (2020) The resistance and resilience of European beech seedlings to drought stress during the period of leaf development. Tree Physiology, 40, 1147-1164.

Geßler A., Keitel C., Kreuzwieser J., Matyssek R., Seiler W., Rennenberg H. (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees, 21, 1-11.

Godwin J., Farrona S. (2020) Plant epigenetic stress memory induced by drought: a physiological and molecular perspective. In: Spillane C., McKeown P. (Eds), Plant epigenetics and epigenomics: methods in molecular biology. Springer, New York, USA, pp 243-259.

Gömöry D., Ditmarová Ľ., Hrivnák M., Jamnická G., Kmeť J., Krajmerová D., et al. (2015) Differentiation in phenological and physiological traits in European beech (Fagus sylvatica L.). European Journal of Forest Research, 134, 1075-1085.

Gömöry D., Paule L. (2011) Trade-off between height growth and spring flushing in common beech (Fagus sylvatica L.). Annals of Forest Science, 68, 975-984.

Guérin M., Martin-Benito D., Arx G., Andreu-Hayles L., Griffin K.L., Hamdan R., et al. (2018) Interannual variations in needle and sapwood traits of Pinus edulis branches under an experimental drought. Ecology and Evolution, 8, 1655-1672.

Hajek P., Kurjak D., von Wühlisch G., Delzon S., Schuldt B. (2016) Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield. Frontiers in Plant Science, 7, 791.

Harrison E.L., Arce C.L., Gray J.E., Hepworth C. (2020) The influence of stomatal morphology and distribution on photosynthetic gas exchange. The Plant Journal, 101, 768-779.

Holland N., Richardson A.D. (2009) Stomatal length correlates with elevation of growth in four temperate species. Journal of Sustainable Forestry, 28, 63-73.

Islam M., Rahman M., Bräuning A. (2019) Long-term wood anatomical time series of two ecologically contrasting tropical tree species reveal differential hydraulic adjustment to climatic stress. Agricultural and Forest Meteorology, 265, 412-423.

Kardiman R., Raebild A. (2018) Relationship between stomatal density, size and speed of opening in Sumatran rainforest species. Tree Physiology, 38, 696-705.

Kardošová M., Husárová H., Kurjak D., Lagaňa R., Šuleková M., Uhrinová V., et al. (2020) Variation in leaf anatomy, vascular traits and nanomechanical cell-wall properties among European beech (Fagus sylvatica L.) provenances. Annals of Forest Science, 77, 1-15.

Kimura K., Yasutake D., Oki T., Yoshida K., Kitano M. (2021) Dynamic modelling of cold-hardiness in tea buds by imitating past temperature memory. Annals of Botany, 127, 317-326.

Kinoshita T., Seki M. (2014) Epigenetic memory for stress response and adaptation in plants. Plant and Cell Physiology, 55, 1859-1863.

Kučerová J., Konôpková A., Pšidová E., Kurjak D., Jamnická G., Slugenová K., et al. (2018) Adaptive variation in physiological traits of beech provenances in Central Europe. iForest-Biogeosciences and Forestry, 11, 24.

Kurjak D., Konôpková A., Kmeť J., Macková M., Frýdl J., Živčák M., et al. (2019) Variation in the performance and thermostability of photosystem II in European beech (Fagus sylvatica L.) provenances is influenced more by acclimation than by adaptation. European Journal of Forest Research, 138, 79-92.

Lakatos F., Molnár M. (2009) Mass mortality of beech (Fagus sylvatica L.) in South-West Hungary. Acta Silvatica Et Lignaria Hungarica, 5, 75-82.

Leuschner C. (2020) Drought response of European beech (Fagus sylvatica L.)-a review. Perspectives in Plant Ecology, Evolution and Systematics, 47, 125576.

Link M.R. (2020) Corrmorant: flexible correlation matrices based on 'ggplot2'. R package version 0.0.0.9007. http://github.com/r-link/corrmorant

Lloret F., Siscart D., Dalmases C. (2004) Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Global Change Biology, 10, 2092-2099.

Mantoan L., Benetti P., Corrêa C.V., Aparecida R.C., Rolim de Almeida L.F. (2020) Rapid dehydration induces long-term water deficit memory in Sorghum seedlings: advantages and consequences. Environmental and Experimental Botany, 180, 104252.

Matyas C. (1996) Climatic adaptation of trees: rediscovering provenance tests. Euphytica, 92, 45-54.

Matyas C., Fady B., Vendramin G. (2009) Forests at the limit: evolutionary-genetic consequences of environmental changes at the receding (xeric) edge of distribution. Report from a researcher workshop. Acta Silvatica Et Lignaria Hungarica, 66, 201-204.

Mueller R.C., Scudder C.M., Porter M.E., Talbot trotter R., Gehring C.A., Whitham T.G. (2005) Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. Journal of Ecology, 93, 1085-1093.

Mukarram M., Choudhary S., Kurjak D., Petek A., Khan M.M.A. (2021) Drought: sensing, signalling, effects and tolerance in higher plants. Physiologia Plantarum, 172, 1291-1300.

Obladen N., Dechering P., Skiadaresis G., Tegel W., Keßler J., Höllerl S., et al. (2021) Tree mortality of European beech and Norway spruce induced by 2018-2019 hot droughts in central Germany. Agricultural and Forest Meteorology, 307, 108482.

Petrík P., Petek A., Konôpková A., Bosela M., Fleischer P., Frýdl J., et al. (2020) Stomatal and leaf morphology response of European Beech (Fagus sylvatica L.) provenances transferred to contrasting climatic conditions. Forests, 11, 1359.

Pšidová E., Ditmarová Ľ., Jamnická G., Kurjak D., Majerová J., Czajkowski T., et al. (2015) Photosynthetic response of beech seedlings of different origin to water deficit. Photosynthetica, 53, 187-194.

Quinn G.P., Keough M.J. (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, UK, p 537.

Ram S. (2018) Tree ring width variations over western Himalaya in India and its linkage with heat and aridity indices. Natural Hazards, 92, 635-645.

Ramírez D.A., Rolando J.L., Yactayo W., Monneveux P., Mares V., Quiroz R. (2015) Improving potato drought tolerance through the induction of long-term water stress memory. Plant Science, 238, 26-32.

Robson T.M., Garzón M.B.; BeechCOSTe52 Database Consortium. (2018) Phenotypic trait variation measured on European genetic trials of Fagus sylvatica L. Scientific Data, 5, 180149.

Sack L., Cowan P.D., Jaikumar N., Holbrook N.M. (2003) The “hydrology” of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell & Environment, 26, 1343-1356.

Sakamoto Y., Ishiguro M., Kitagawa G. (1986) Akaike information criterion statistics. D. Reidel Publishing, Dordrecht, the Netherlands.

Sánchez-Gómez D., Robson T.M., Gascó A., Gil-Pelegrín E., Aranda I. (2013) Differences in the leaf functional traits of six beech (Fagus sylvatica L.) populations are reflected in their response to water limitation. Environmental and Experimental Botany, 87, 110-119.

Scharnweber T., Manthey M., Criegee C., Bauwe A., Schröder C., Wilmking M. (2011) Drought matters-declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management, 262, 947-961.

Schuldt B., Buras A., Arend M., Vitasse Y., Beierkuhnlein C., Damm A., et al. (2020) A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology, 45, 86-103.

Seidl R., Thom D., Kautz M., Martin-Benito D., Peltoniemi M., Vacchiano G., et al. (2017) Forest disturbances under climate change. Nature Climate Change, 7, 395-402.

Senf C., Buras A., Zang C.S., Rammig A., Seidl R. (2020) Excess forest mortality is consistently linked to drought across Europe. Nature Communications, 11, 1-8.

Senf C., Pflugmacher D., Zhiqiang Y., Sebald J., Knorn J., Neumann M., et al. (2018) Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nature Communications, 9, 1-8.

Shahinnia F., Tricker P.J., Hajirezaei M., Chen Z. (2019) Genetics and genomics of stomatal traits for improvement of abiotic stress tolerance in cereals. In: Rajpal V. R., Sehgal D., Kumar A., Raina S. N. (Eds), Genomics assisted breeding of crops for abiotic stress tolerance, Vol. II, Sustainable development and biodiversity. Springer International, Berlin, Germany, XXI, pp 1-20.

Simmons A.R., Bergmann D.C. (2016) transcriptional control of cell fate in the stomatal lineage. Current Opinion in Plant Biology, 29, 1-8.

Stojnić S., Kovačević B., Kebert M., Vaštag E., Bojović M., Stanković-Neđić M., et al. (2019) The use of physiological, biochemical and morpho-anatomical traits in tree breeding for improved water-use efficiency of Quercus robur L. Forest Systems, 28, e017.

Stojnić S., Orlović S., Miljković D., Galić Z., Kebert M., von Wuehlisch G. (2015a) Provenance plasticity of European beech leaf traits under differing environmental conditions at two Serbian common garden sites. European Journal of Forest Research, 134, 1109-1125.

Stojnić S., Orlović S., Trudić B., Živković U., von Wuehlisch G., Miljković D. (2015b) Phenotypic plasticity of European beech (Fagus sylvatica L.) stomatal features under water deficit assessed in provenance trial. Dendrobiology, 73, 163-173.

Stojnić S., Suchocka M., Benito-Garzón M., Torres-Ruiz J.M., Cochard H., Bolte A., et al. (2018) Variation in xylem vulnerability to embolism in European beech from geographically marginal populations. Tree Physiology, 38, 173-185.

Teskey R., Wertin T., Bauweraerts I., Ameye M., Mcguire A.M., Steppe K. (2015) Responses of tree species to heat waves and extreme heat events: tree response to extreme heat. Plant, Cell & Environment, 38, 1699-1712.

Tombesi S., Frioni T., Poni S., Palliotti A. (2018) Effect of water stress “memory” on plant behavior during subsequent drought stress. Environmental and Experimental Botany, 150, 106-114.

Trumbore S., Brando P., Hartmann H. (2015) Forest health and global change. Science, 349, 814-818.

Uemura A., Ishida A., Nakano T., Terashima I., Tanabe H., Matsumoto Y. (2000) Acclimation of leaf characteristics of Fagus species to previous-year and current-year solar irradiances. Tree Physiology, 20, 945-951.

Urli M., Porte A.J., Cochard H., Guengant Y., Burlett R., Delzon S. (2013) Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiology, 33, 672-683.

Valladares F., Wright S.J., Lasso E., Kitajima K., Pearcy R.W. (2000) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81, 1925-1936.

Van Wittenberghe S., Adriaenssens S., Staelens J., Verheyen K., Samson R. (2012) Variability of stomatal conductance, leaf anatomy, and seasonal leaf wettability of young and adult European beech leaves along a vertical canopy gradient. Trees, 26, 1427-1438.

Vitasse Y., Basler D. (2013) What role for photoperiod in the bud burst phenology of European beech. European Journal of Forest Research, 132, 1-8.

Walter J., Jentsch A., Beierkuhnlein C., Kreyling J. (2013) Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environmental and Experimental Botany, 94, 3-8.

Wang F., Israel D., Ramírez-Valiente J.A., Sánchez-Gómez D., Aranda I., Aphalo P.J., et al. (2021) Seedlings from marginal and core populations of European beech (Fagus sylvatica L.) respond differently to imposed drought and shade. Trees, 35, 53-67.

Weithmann G., Schuldt B., Link R.M., Heil D., Hoeber S., John H., et al. (2021) Leaf trait modification in European beech trees in response to climatic and edaphic drought. Plant Biology, plb.13366.

Withington J.M., Goebel M., Bułaj B., Oleksyn J., Reich P.B., Eissenstat D.M. (2021) Remarkable similarity in timing of absorptive fine-root production across 11 diverse temperate tree species in a common garden. Frontiers in Plant Science, 11, 623722.

Wojtyla Ł., Paluch-Lubawa E., Sobieszczuk-Nowicka E., Garnczarska M. (2020) Drought stress memory and subsequent drought stress tolerance in plants. In: Hossain M.A., Liu F., Burritt D., Fujita M., Huang B. (Eds), Priming-mediated stress and cross-stress tolerance in crop plants. Academic Press, Cambridge, MA, USA, pp 115-131.

Wolf L. (1950) Mikroskopicka tehnica. National Health Publishing, Praha, Czech Republic.

Wortemann R., Herbette S., Barigah T.S., Fumanal B., Alia R., Ducousso A., et al. (2011) Genotypic variability and phenotypic plasticity of cavitation resistance in Fagus sylvatica L. across Europe. Tree Physiology, 31, 1175-1182.

Wright I.J., Westoby M., Reich P.B. (2002) Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 90, 534-543.

von Wühlisch G., Liesebach M., Muhs H.J., Stephan B.R. (1998) A network of international beech provenance trials. In: Turok J., Kremer A., de Vries S. (Eds), First EUFORGEN meeting on social broadleaves. International Plant Genetic Resources Institute, Rome, Italy, pp. 164-172.

Zang U., Goisser M., Meyer N., Häberle K.H., Borken W. (2021) Chemical and morphological response of beech saplings (Fagus sylvatica L.) to an experimental soil drought gradient. Forest Ecology and Management, 498, 119569.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...