Can seedlings of Norway spruce (Picea abies L. H. Karst.) populations withstand changed climate conditions?

. 2023 ; 61 (3) : 328-341. [epub] 20230711

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39651359

A manipulative experiment with two different water regimes was established to identify the variability of physiological responses to environmental changes in 5-year-old Norway spruce provenances in the Western Carpathians. While variations in the growth responses were detected only between treatments, photosynthetic and biochemical parameters were also differently influenced among provenances. Following drought treatment, an obvious shrinkage of tree stems was observed. In most provenances, drought had a negative effect on leaf gas-exchange parameters and kinetics of chlorophyll a fluorescence. Secondary metabolism was not affected so much with notable differences in concentration of sabinene, o-cimene, and (-)-alpha-terpineol monoterpenes. The most suitable indicators of drought stress were abscisic acid and fluorescence parameters. Seedlings from the highest altitude (1,500 m a.s.l.) responded better to stress conditions than the other populations. Such provenance trials may be a valuable tool in assessing the adaptive potential of spruce populations under changing climate.

Zobrazit více v PubMed

Avramova Z.: Transcriptional ‘memory’ of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. – Plant J. 83: 149-159, 2015. 10.1111/tpj.12832 PubMed DOI

Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water-stress studies. – Plant Soil 39: 205-207, 1973. 10.1007/BF00018060 DOI

Betsch P., Bonal D., Breda N. et al. : Drought effects on water relations in beech: The contribution of exchangeable water reservoirs. – Agr. Meteorol. 151: 531-543, 2011. 10.1016/j.agrformet.2010.12.008 DOI

Bigras F.J.: Photosynthetic response of white spruce families to drought stress. – New Forest. 29: 135-148, 2005. 10.1007/s11056-005-0245-9 DOI

Bruce T.J.A., Matthes M.C., Napier J.A., Pickett J.A.: Stressful “memories” of plants: evidence and possible mechanisms. – Plant Sci. 173: 603-608, 2007. 10.1016/j.plantsci.2007.09.002 DOI

Bussotti F., Gerosa G., Digrado A., Pollastrini M.: Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. – Ecol. Indic. 108: 105686, 2020. 10.1016/j.ecolind.2019.105686 DOI

Bussotti F., Pollastrini M., Holland V., Brüggemann W.: Functional traits and adaptive capacity of European forests to climate change. – Environ. Exp. Bot. 111: 91-113, 2015. 10.1016/j.envexpbot.2014.11.006 DOI

Critchley C.: Photoinhibition. – In: Raghavendra A. (ed.): Photosynthesis – a comprehensive treatise. Pp. 264-273. Cambridge University Press, Cambridge: 2000. https://www.cambridge.org/do/academic/subjects/life-sciences/plant-science/photosynthesis-comprehensive-treatise

Čermák P., Kolář T., Žid T. et al. : Norway spruce responses to drought forcing in area affected by forest decline. – For. Syst. 28: e016, 2019. 10.5424/fs/2019283-14868 DOI

Dąbrowski P., Baczewska-Dąbrowska A.H., Kalaji H.M. et al. : Exploration of chlorophyll PubMed DOI PMC

Daszkowska-Golec A.: The role of abscisic acid in drought stress: How ABA helps plants to cope with drought stress. – In: Hossain M., Wani S., Bhattacharjee S. et al. (ed.): Drought Stress Tolerance in Plants. Vol. 2. Pp. 123-151. Springer, Cham: 2016. 10.1007/978-3-319-32423-4_5 DOI

De Ronde J.A., Cress W.A., Krüger G.H.J. et al. : Photosynthetic response of transgenic soybean plants, containing an PubMed DOI

Demmig-Adams B., Adams III W.W.: Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. – New Phytol. 172: 11-21, 2006. 10.1111/j.1469-8137.2006.01835.x PubMed DOI

Epron D., Dreyer E.: Stomatal and non-stomatal limitation of photosynthesis by leaf water deficits in three oak species: a comparison of gas exchange and chlorophyll DOI

Fleta-Soriano E., Munné-Bosch S.: Stress memory and the inevitable effects of drought: a physiological perspective. – Front. Plant Sci. 7: 143, 2016. 10.3389/fpls.2016.00143 PubMed DOI PMC

Godwin J., Farrona S.: Plant epigenetic stress memory induced by drought: a physiological and molecular perspective. – In: Spillane C., McKeown P. (ed.): Plant Epigenetics and Epigenomics. Methods in Molecular Biology. Vol. 2093. Pp. 243-259. Humana, New York: 2020. 10.1007/978-1-0716-0179-2_17 PubMed DOI

Golldack D., Li C., Mohan H., Probst N.: Tolerance to drought and salt stress in plants: unraveling the signalling networks. – Front. Plant Sci. 5: 151, 2014. 10.3389/fpls.2014.00151 PubMed DOI PMC

Guidi L., Lo Piccolo E., Landi M.: Chlorophyll fluorescence, photoinhibition and abiotic stress: Does it make any difference the fact to be a C PubMed DOI PMC

Gunes A., Inal A., Adak M.S. et al. : Effect of drought stress implemented at pre- or post-anthesis stage on some physiological parameters as screening criteria in chickpea cultivars. – Russ. J. Plant Physiol. 55: 59-67, 2008. 10.1134/S102144370801007x DOI

Haas J.C., Vergara A., Serrano A.R. et al. : Candidate regulators and target genes of drought stress in needles and roots of Norway spruce. – Tree Physiol. 41: 1230-1246, 2021. 10.1093/treephys/tpaa178 PubMed DOI PMC

Hartl-Meier C., Zang C., Dittmar C. et al. : Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. – Clim. Res. 60: 119-132, 2014. 10.3354/cr01226 DOI

Hayat S., Hayat Q., Alyemeni M.N. et al. : Role of proline under changing environments. – Plant Signal. Behav. 7: 1456-1466, 2012. 10.4161/psb.21949 PubMed DOI PMC

Hlásny T., Mátyás C., Seidl R. et al. : Climate change increases the drought risk in Central European Forests: What are the options for adaptation? – Lesn. Cas. For. J. 60: 5-18, 2014. https://web.nlcsk.org/wp-content/uploads/2019/10/21.pdf

Holopainen J.K., Virjamo V., Ghimire R.P. et al. : climate change effects on secondary compounds of forest trees in the northern hemisphere. – Front. Plant Sci. 9: 1445, 2018. 10.3389/fpls.2018.01445 PubMed DOI PMC

Hrivnák M., Krajmerová D., Kurjak D. et al. : Differential associations between nucleotide polymorphisms and physiological traits in Norway spruce ( DOI

Hsu P.-K., Dubeaux G., Takahashi Y., Schroeder J.I.: Signaling mechanisms in abscisic acid-mediated stomatal closure. – Plant J. 105: 307-321, 2021. 10.1111/tpj.15067 PubMed DOI PMC

Huang J., Hammerbacher A., Weinhold A. et al. : Eyes on the future – evidence for trade-offs between growth, storage and defense in Norway spruce. – New Phytol. 222: 144-158, 2019. 10.1111/nph.15522 PubMed DOI

Chater C.C.C., Oliver J., Casson S., Gray J.E.: Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. – New Phytol. 202: 376-391, 2014. 10.1111/nph.12713 PubMed DOI

Chen J., Burke J.J., Xin Z.: Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature. – BMC Plant Biol. 18: 11, 2018. 10.1186/s12870-018-1228-2 PubMed DOI PMC

Jamnická G., Fleischer P., Konôpková A. et al. : Norway spruce ( DOI

Kalaji H.M., Jajoo A., Oukarroum A. et al. : Chlorophyll DOI

Kivimäenpää M., Riikonen J., Ahonen V. et al. : Sensitivity of Norway spruce physiology and terpenoid emission dynamics to elevated ozone and elevated temperature under open-field exposure. – Environ. Exp. Bot. 90: 32-42, 2013. 10.1016/j.envexpbot.2012.11.004 DOI

Kmeť J., Ditmarová Ľ., Priwitzer T. et al. : Physiological limits – a possible cause of spruce decline. – Beskydy 3: 55-64, 2010.

Köcher P., Horna V., Leuschner C.: Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. – Tree Physiol. 32: 1021-1032, 2012. 10.1093/treephys/tps049 PubMed DOI

Kopaczyk J.M., Warguła J., Jelonek T.: The variability of terpenes in conifers under developmental and environmental stimuli. – Environ. Exp. Bot. 180: 104197, 2020. 10.1016/j.envexpbot.2020.104197 DOI

Krasensky J., Jonak C.: Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. – J. Exp. Bot. 63: 1593-1608, 2012. 10.1093/jxb/err460 PubMed DOI PMC

Lawlor D.W.: Limitation to photosynthesis in water-stressed leaves: stomata PubMed DOI PMC

Longerberger P.S., Smith C.W., Duke S.E., McMichael B.L.: Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton. – Euphytica 166: 25-33, 2009. 10.1007/s10681-008-9820-4 DOI

Madmony A., Tognetti R., Zamponi L. et al. : Monoterpene responses to interacting effects of drought stress and infection by the fungus DOI

Malnoë A.: Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. – Environ. Exp. Bot. 154: 123-133, 2018. 10.1016/j.envexpbot.2018.05.005 DOI

Marešová J., Húdoková H., Sarvašová L. et al. : Dynamics of internal isoprenoid metabolites in young PubMed DOI

Miron M.S., Sumalan R.L.: Physiological responses of Norway spruce (

Mukarram M., Choudhary S., Kurjak D. et al. : Drought: Sensing, signalling, effects and tolerance in higher plants. – Physiol. Plantarum 172: 1291-1300, 2021. 10.1111/ppl.13423 PubMed DOI

Mukarram M., Khan M.M.A., Kujak D. et al. : Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass ( PubMed DOI PMC

Mukarram M., Khan M.M.A., Zehra A. et al. : Suffer or survive: Decoding salt-sensitivity of lemongrass and its implication on essential oil productivity. – Front. Plant. Sci. 13: 903954, 2022. 10.3389/fpls.2022.903954 PubMed DOI PMC

Mullin M., Klutsch J.G., Cale J.A. et al. : Primary and secondary metabolite profiles of lodgepole pine trees change with elevation, but not with latitude. – J. Chem. Ecol. 47: 280-293, 2021. 10.1007/s10886-021-01249-y PubMed DOI

Munemasa S., Hauser F., Park J. et al. : Mechanisms of abscisic acid-mediated control of stomatal aperture. – Curr. Opin. Plant Biol. 28: 154-162, 2015. 10.1016/j.pbi.2015.10.010 PubMed DOI PMC

Murchie E.H., Niyogi K.K.: Manipulation of photoprotection to improve plant photosynthesis. – Plant Physiol. 155: 86-92, 2011. 10.1104/pp.110.168831 PubMed DOI PMC

Oberhuber W., Hammerle A., Kofler W.: Tree water status and growth of saplings and mature Norway spruce ( PubMed DOI PMC

Oberhuber W., Kofler W., Schuster R., Wieser G.: Environmental effects on stem water deficit in co-occurring conifers exposed to soil dryness. – Int. J. Biometeorol. 59: 417-426, 2015b. 10.1007/s00484-014-0853-1 PubMed DOI PMC

Offenthaler I., Hietz P., Richter H.: Wood diameter indicates diurnal and long-term patterns of xylem water potential in Norway spruce. – Trees-Struct. Funct. 15: 215-221, 2001. 10.1007/s004680100090 DOI

Pashkovskiy P.P., Vankova R., Zlobin I.E. et al. : Comparative analysis of abscisic acid levels and expression of abscisic acid-related genes in Scots pine and Norway spruce seedlings under water deficit. – Plant Physiol. Bioch. 140: 105-112, 2019. 10.1016/j.plaphy.2019.04.037 PubMed DOI

Perreca E., Eberl F., Santoro M.V. et al. : Effect of drought and methyl jasmonate treatment on primary and secondary isoprenoid metabolites derived from the MEP pathway in the white spruce PubMed DOI PMC

Petrik P., Petek-Petrik A., Kurjak D. et al. : Interannual adjustments in stomatal and leaf morphological traits of European beech ( PubMed DOI

Pukacki P.M., Kamińska-Rożek E.: Effect of drought stress on chlorophyll DOI

Rehschuh R., Mette T., Menzel A., Buras A.: Soil properties affect the drought susceptibility of Norway spruce. – Dendrochronologia 45: 81-89, 2017. 10.1016/j.dendro.2017.07.003 DOI

Ruban A.V., Murchie E.H.: Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: A new approach. – BBA-Bioenergetics 1817: 977-982, 2012. 10.1016/j.bbabio.2012.03.026 PubMed DOI

Shevela D., Ananyev G., Vatland A.K. et al. : ‘Birth defects’ of photosystem II make it highly susceptible to photodamage during chloroplast biogenesis. – Physiol. Plantarum 166: 165-180, 2019. 10.1111/ppl.12932 PubMed DOI

Schiop S.T., Al Hassan M., Sestras A.F. et al. : Biochemical responses to drought, at the seedling stage, of several Romanian Carpathian populations of Norway spruce ( DOI

Schroeder J.I., Kwak J.M., Allen G.J.: Guard cell abscisic acid signalling and engineering drought hardiness in plants. – Nature 410: 327-330, 2001. 10.1038/35066500 PubMed DOI

Sousaraei N., Mashayekhi K., Mousavizadeh S.J. et al. : Screening of tomato landraces for drought tolerance based on growth and chlorophyll fluorescence analyses. – Hortic. Environ. Biotech. 62: 521-535, 2021. 10.1007/S13580-020-00328-5 DOI

Stefanov M.A., Rashkov G.D., Apostolova E.L.: Assessment of the photosynthetic apparatus functions by chlorophyll fluorescence and P PubMed DOI PMC

Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll DOI

Tang A.-C., Kawamitsu I., Kanechi M., Boyer J.S.: Photosynthetic oxygen evolution at low water potential in leaf discs lacking an epidermis. – Ann. Bot.-London 89: 861-870, 2002. 10.1093/aob/mcf081 PubMed DOI PMC

Tomášková I., Pastierovič F., Krejzková A. et al. : Norway spruce ecotypes distinguished by chlorophyll DOI

Tužinský L., Bublinec E., Tužinský M.: Development of soil water regime under spruce stands. – Folia Oecol. 44: 46-53, 2017. 10.1515/foecol-2017-0006 DOI

Urban L., Aarrouf J., Bidel L.P.R.: Assessing the effects of water deficit on photosynthesis using parameters derived from measurements of leaf gas exchange and of chlorophyll PubMed DOI PMC

Valentovič P., Luxová M., Kolarovič L., Gašparíková O.: Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. – Plant Soil Environ. 52: 186-191, 2006. 10.17221/3364-PSE DOI

Večeřová K., Klem K., Veselá B. et al. : Combined effect of altitude, season and light on the accumulation of extractable terpenes in Norway spruce needles. – Forests 12: 1737, 2021. 10.3390/f12121737 DOI

Virjamo V., Julkunen-Tiitto R.: Variation in piperidine alkaloid chemistry of Norway spruce ( DOI

Wang Z., Li G., Sun H. et al. : Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. – Biol. Open 7: bio035279, 2018. 10.1242/bio.035279 PubMed DOI PMC

Wohlfahrt S., Schmitt V., Wild A.: Investigation on phosphoenol pyruvate carboxylase and proline in damaged and undamaged needles of DOI

Wu Q., Wang M., Shen J. et al. : ZmOST1 mediates abscisic acid regulation of guard cell ion channels and drought stress responses. – J. Integr. Plant Biol. 61: 478-491, 2019. 10.1111/jipb.12714 PubMed DOI

Yordanov Y., Velikova V., Tsonev T.: Plant responses to drought, acclimation and stress tolerance. – Photosynthetica 38: 171-186, 2000. 10.1023/A:1007201411474 DOI

Yu D., Wildhagen H., Tylewicz S. et al. : Abscisic acid signalling mediates biomass trade-off and allocation in poplar. – New Phytol. 223: 1192-1203, 2019. 10.1111/nph.15878 PubMed DOI

Zivcak M., Brestic M., Balatova Z. et al. : Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. – Photosynth. Res. 117: 529-546, 2013. 10.1007/s11120-013-9885-3 PubMed DOI

Zlobin I.E., Kartashov A.V., Pashkovskiy P.P. et al. : Comparative photosynthetic responses of Norway spruce and Scots pine seedlings to prolonged water deficiency. – J. Photoch. Photobio. B 201: 111659, 2019. 10.1016/j.jphotobiol.2019.111659 PubMed DOI

Zweifel R., Zimmermann L., Newbery D.M.: Modeling tree water deficit from microclimate: an approach to quantifying drought stress. – Tree Physiol. 25: 147-156, 2005. 10.1093/treephys/25.2.147 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...