Suffer or Survive: Decoding Salt-Sensitivity of Lemongrass and Its Implication on Essential Oil Productivity

. 2022 ; 13 () : 903954. [epub] 20220609

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35783975

The cultivation of lemongrass (Cymbopogon flexuosus) crop is dominated by its medicinal, food preservative, and cosmetic demands. The growing economy of the lemongrass market suggests the immense commercial potential of lemongrass and its essential oil. Nevertheless, the continuous increase of the saline regime threatens the growth and productivity of most of the plant life worldwide. In this regard, the present experiment explores the salt sensitiveness of the lemongrass crop against five different levels of salt stress. Metabolomic analyses suggest that lemongrass plants can effectively tolerate a salt concentration of up to 80 mM and retain most of their growth and productivity. However, extreme NaCl concentrations (≥160 mM) inflicted significant (α = 0.05) damage to the plant physiology and exhausted the lemongrass antioxidative defence system. Therefore, the highest NaCl concentration (240 mM) minimised plant height, chlorophyll fluorescence, and essential oil production by up to 50, 27, and 45%. The overall data along with the salt implications on photosynthetic machinery and ROS metabolism suggest that lemongrass can be considered a moderately sensitive crop to salt stress. The study, sensu lato, can be used in reclaiming moderately saline lands with lemongrass cultivation converting such lands from economic liability to economic asset.

Zobrazit více v PubMed

Aftab K., Ali M., Aijaz P., Beena N., Gulzar H. J., Sheikh K., et al. (2011). Determination of different trace and essential element in lemon grass samples by x-ray fluorescence spectroscopy technique. Int. Food Res. J. 18 265–270.

Ashraf M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27 84–93. 10.1016/j.biotechadv.2008.09.003 PubMed DOI

Aziz A., Wahid A., Farooq M. (2014). Leaf age and seasonality determines the extent of oxidative stress and induction of antioxidants in lemongrass. Pak. J. of Agric. Sci. 51 657–664.

Bates L. S., Waldren R. P., Teare I. D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39 205–207. 10.1007/BF00018060 DOI

Beauchamp C., Fridovich I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 276–287. 10.1016/0003-2697(71)90370-8 PubMed DOI

Cakmak I., Horst W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83 463–468. 10.1111/j.1399-3054.1991.tb00121.x DOI

Chaves M. M., Flexas J., Pinheiro C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103 551–560. 10.1093/aob/mcn125 PubMed DOI PMC

Chourasia K. N., Lal M. K., Tiwari R. K., Dev D., Kardile H. B., Patil V. U., et al. (2021). Salinity stress in potato: understanding physiological, biochemical and molecular responses. Life 11:545. 10.3390/LIFE11060545 PubMed DOI PMC

Das K., Roychoudhury A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2:53. 10.3389/fenvs.2014.00053 DOI

Dhinesh B., Lalvani J. I. J., Parthasarathya M., Annamalaia K. (2016). An assessment on performance, emission and combustion characteristics of single cylinder diesel engine powered by Cymbopogon flexuosus biofuel. Energy Convers. Manag. 117 466–474. 10.1016/j.enconman.2016.03.049 DOI

Diouf I. A., Derivot L., Bitton F., Pascual L., Causse M. (2018). Water deficit and salinity stress reveal many specific QTL for plant growth and fruit quality traits in tomato. Front. Plant Sci. 9:279. 10.3389/FPLS.2018.00279 PubMed DOI PMC

Flexas J., Bota J., Loreto F., Cornic G., Sharkey T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 6 269–279. 10.1055/S-2004-820867/ID/90 PubMed DOI

Flowers T. J., Colmer T. D. (2008). Salinity tolerance in halophytes. New Phytol. 179 945–963. 10.1111/j.1469-8137.2008.02531.x PubMed DOI

Foyer C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 154 134–142. 10.1016/j.envexpbot.2018.05.003 PubMed DOI PMC

Gaba J., Bhardwaj G., Sharma A. (2020). “Lemongrass,” in Antioxidants in Vegetables and Nuts - Properties and Health Benefits, eds Nayik G. S., Gull A. (Singapore: Springer; ).

Guenther E. (1972). The essential oils: history, origin in plants, production. Analysis 1 147–151.

Gupta S., Pandey S. (2020). Enhanced salinity tolerance in the common bean (Phaseolus vulgaris) plants using twin ACC deaminase producing rhizobacterial inoculation. Rhizosphere 16:100241. 10.1016/J.RHISPH.2020.100241 DOI

Haque A. N. M. A., Remadevi R., Naebe M. (2018). Lemongrass (Cymbopogon): a review on its structure, properties, applications and recent developments. Cellulose 25 5455–5477. 10.1007/s10570-018-1965-2 DOI

Hessini K., Issaoui K., Ferchichi S., Saif T., Abdelly C., Siddique K. H., et al. (2019). Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiol. Biochem. 139 171–178. 10.1016/J.PLAPHY.2019.03.005 PubMed DOI

Idrees M., Naeem M., Aftab T., Khan M. (2011). Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiol. Plant. 33 987–999.

Kiani-Pouya A., Rasouli F., Rabbi B., Falakboland Z., Yong M., Chen Z. H., et al. (2020). Stomatal traits as a determinant of superior salinity tolerance in wild barley. J. Plant Physiol. 245:153108. 10.1016/J.JPLPH.2019.153108 PubMed DOI

Kibria M. G., Hossain M., Murata Y., Hoque M. A. (2017). Antioxidant defense mechanisms of salinity tolerance in rice genotypes. Rice Sci. 24 155–162. 10.1016/J.RSCI.2017.05.001 DOI

Kumar K. B., Khan P. (1982). Peroxidase and polyphenol oxidase in excised ragi (Eleusine corocana cv PR 202) leaves during senescence. Indian J. Exp. Biol. 20 412–416. PubMed

Kuo T. M., Warner R. L., Kleinhofs A. (1982). In vitro stability of nitrate reductase from barley leaves. Phytochemistry 21 531–533. 10.1016/0031-9422(82)83134-8 DOI

Maas E. V., Grattan S. R. (1999). Crop yields as affected by salinity. Agricultural Drainage 38 55–108.

Machado R., Serralheiro R. (2017). Soil salinity: effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae 3:30. 10.3390/horticulturae3020030 DOI

Meena S., Kumar S. R., Venkata Rao D. K., Dwivedi V., Shilpashree H. B., Rastogi S., et al. (2016). De novo sequencing and analysis of lemongrass transcriptome provide first insights into the essential oil biosynthesis of aromatic grasses. Front. Plant Sci. 7:1129. 10.3389/fpls.2016.01129 PubMed DOI PMC

Mirzaei M., Moghadam L. A., Hakimi L., Danaee E. (2020). Plant growth promoting rhizobacteria (PGPR) improve plant growth, antioxidant capacity, and essential oil properties of lemongrass (Cymbopogon citratus) under water stress. Iran. J. Plant Physiol. 10 3155–3166.

Mukarram M., Khan M. M. A., Zehra A., Choudhary S., Naeem M., Aftab T. (2021a). “Biosynthesis of lemongrass essential oil and the underlying mechanism for its insecticidal activity,” in Medicinal and Aromatic Plants, eds Aftab T., Hakeem K. R. (Cham: Springer; ).

Mukarram M., Choudhary S., Khan M. A., Poltronieri P., Khan M. M. A., Ali J., et al. (2021b). Lemongrass essential oil components with antimicrobial and anticancer activities. Antioxidants 11:20. 10.3390/antiox11010020 PubMed DOI PMC

Mukarram M., Khan M., Uddin M., Corpas F. J. (2021c). Irradiated chitosan (ICH): an alternative tool to increase essential oil content in lemongrass (Cymbopogon flexuosus). Acta Physiol. Plant. 44 1–15. 10.1007/S11738-021-03335-W DOI

Mukarram M., Khan M. M. A., Corpas F. J. (2021d). Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield. J. Hazard. Mater. 412:125254. 10.1016/j.jhazmat.2021.125254 PubMed DOI

Mukarram M., Choudhary S., Kurjak D., Petek A., Khan M. M. A. (2021e). Drought: sensing, signalling, effects and tolerance in higher plants. Physiol. Plant. 172 1291–1300. 10.1111/ppl.13423 PubMed DOI

Mukarram M., Mohammad F., Naeem M., Khan M. (2021f). “Exogenous gibberellic acid supplementation renders growth and yield protection against salinity induced oxidative damage through upregulating antioxidant metabolism in fenugreek (Trigonella foenum-graecum L.),” in Fenugreek, (Singapore: Springer; ).

Munns R. (2002). Comparative physiology of salt and water stress. Plant Cell Environ. 25 239–250. 10.1046/j.0016-8025.2001.00808.x PubMed DOI

Munns R. (2005). Genes and salt tolerance: bringing them together. New Phytol. 167 645–663. 10.1111/j.1469-8137.2005.01487.x PubMed DOI

Munns R., Tester M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59 651–681. PubMed

Munns R., James R. A., Läuchli A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57 1025–1043. 10.1093/jxb/erj100 PubMed DOI

Negrão S., Schmöckel S. M., Tester M. (2017). Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119 1–11. 10.1093/aob/mcw191 PubMed DOI PMC

Noctor G., Reichheld J. P., Foyer C. H. (2018). ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 80 3–12. 10.1016/J.SEMCDB.2017.07.013 PubMed DOI

Okuda T., Matsuda Y., Yamanaka A., Sagisaka S. (1991). Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol. 97 1265–1267. 10.1104/pp.97.3.1265 PubMed DOI PMC

Pan T., Liu M., Kreslavski V. D., Zharmukhamedov S. K., Nie C., Yu M., et al. (2020). Non-stomatal limitation of photosynthesis by soil salinity. Crit. Rev. Environ. Sci. Technol. 51 791–825. 10.1080/10643389.2020.1735231 DOI

Patra D. K., Pradhan C., Patra H. K. (2019). Chromium bioaccumulation, oxidative stress metabolism and oil content in lemon grass Cymbopogon flexuosus (Nees ex Steud.) W. Watson grown in chromium rich over burden soil of Sukinda chromite mine, India. Chemosphere 218 1082–1088. PubMed

Pitman M. G., Läuchli A. (2002). “Global impact of salinity and agricultural ecosystems,” in Salinity: Environment - Plants - Molecules, eds Läuchli A., Lüttge U. (Dordrecht: Kluwer Academic Publishers; ).

Qadir M., Quillérou E., Nangia V., Murtaza G., Singh M., Thomas R., et al. (2014). Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 38 282–295. 10.1111/1477-8947.12054 DOI

Rehman Z., Hussain A., Saleem S., Khilji S. A., Sajid Z. A. (2022). Exogenous application of salicylic acid enhances salt stress tolerance in lemongrass (Cymbopogon flexuosus Steud. Wats)’, Pak. J. Bot. 54 371–378.

Richard L. A. (1954). Diagnosis and Improvement of Saline and Alkali Soils. Agriculture Handbook No. 60. Washington StateDC: United States Department of Agriculture.

Saddiq M. S., Iqbal S., Hafeez M. B., Ibrahim A. M., Raza A., Fatima E. M., et al. (2021). Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy 11:1193. 10.3390/AGRONOMY11061193 DOI

Sathiyamoorthi R., Sankaranarayanan G. (2016). Effect of antioxidant additives on the performance and emission characteristics of a DICI engine using neat lemongrass oil–diesel blend. Fuel 174 89–96. 10.1016/j.fuel.2016.01.076 DOI

Shabala S., Cuin T. A. (2008). Potassium transport and plant salt tolerance. Physiol. Plant. 133 651–669. 10.1111/j.1399-3054.2007.01008.x PubMed DOI

Singh D. V., Anwar M. (1985). Effect of soil salinity on herb and oil yield and quality of some Cymbopogon species-Indian Journals. J. Indian Soc. Soil Sci. 33 362–365. 10.1002/ldr.853 DOI

Ullah M. A., Rasheed M., Ishtiaq Hyder S. (2020). Medicinal plant lemon grass (Cymbopogon citratus) growth under salinity and sodicity. KJFHC 6 9–15. 10.13106/kjfhc.2020.vol6.no1.9 DOI

USSL (2005). George E. Brown, Jr Salinity Laboratory’. Riverside, StateCA: USSL.

van Zelm E., Zhang Y., Testerink C. (2020). Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 71 403–433. PubMed

Venkatesan E. P., Kandhasamy A., Subramani L., Sivalingam A., Kumar A. S. (2019). Experimental investigation on lemongrass oil water emulsion in low heat rejection direct ignition diesel engine. J. Test. Eval. 47 238–255. 10.1520/JTE20170357 PubMed DOI

Widodo, Patterson J. H., Newbigin E., Tester M., Bacic A., Roessner U. (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J. Exp. Bot. 60 4089–4103. 10.1093/jxb/erp243 PubMed DOI PMC

Zeeshan M., Lu M., Sehar S., Holford P., Wu F. (2020). Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy 10:127.

Zeng L., Shannon M. C. (2000). Salinity effects on seedling growth and yield components of rice. Crop Sci. 40 996–1003.

Zörb C., Geilfus C. M., Dietz K. J. (2019). Salinity and crop yield. Plant Biol. 21 31–38. 10.1111/plb.12884 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...