Optimizing Friction Stir Welding of Dissimilar Grades of Aluminum Alloy Using WASPAS
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35268941
PubMed Central
PMC8911411
DOI
10.3390/ma15051715
PII: ma15051715
Knihovny.cz E-zdroje
- Klíčová slova
- alloys, aluminum, composites, friction stir welding, multi-attribute decision making, optimization, parameters, properties, stir casting,
- Publikační typ
- časopisecké články MeSH
Aluminum is a widely popular material due to its low cost, low weight, good formability and capability to be machined easily. When a non-metal such as ceramic is added to aluminum alloy, it forms a composite. Metal Matrix Composites (MMCs) are emerging as alternatives to conventional metals due to their ability to withstand heavy load, excellent resistance to corrosion and wear, and comparatively high hardness and toughness. Aluminum Matrix Composites (AMCs), the most popular category in MMCs, have innumerable applications in various fields such as scientific research, structural, automobile, marine, aerospace, domestic and construction. Their attractive properties such as high strength-to-weight ratio, high hardness, high impact strength and superior tribological behavior enable them to be used in automobile components, aviation structures and parts of ships. Thus, in this research work an attempt has been made to fabricate Aluminum Alloys and Aluminum Matrix Composites (AMCs) using the popular synthesis technique called stir casting and join them by friction stir welding (FSW). Dissimilar grades of aluminum alloy, i.e., Al 6061 and Al 1100, are used for the experimental work. Alumina and Silicon Carbide are used as reinforcement with the aluminum matrix. Mechanical and corrosion properties are experimentally evaluated. The FSW process is analyzed by experimentally comparing the welded alloys and welded composites. Finally, the best suitable FSW combination is selected with the help of a Multi-Attribute Decision Making (MADM)-based numerical optimization technique called Weighted Aggregated Sum Product Assessment (WASPAS).
Data Analytics Lab REST Labs Kaveripattinam 635112 India
Department of Mechanical Engineering Malwa Institute of Science and Technology Indore 453111 India
Department of Mechanical Engineering Saranathan College of Engineering Trichy 620012 India
Zobrazit více v PubMed
Bodunrin M.O., Alaneme K.K., Chown L.H. Aluminum matrix hybrid composites: A review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 2015;169:1–12.
Bharath V., Nagaral M., Auradi V., Kori S.A. Preparation of Al6061-Al2O3 MMCs by stir casting and evaluation of mechanical and wear properties. Procedia Mater. Sci. 2014;6:1658–1667. doi: 10.1016/j.mspro.2014.07.151. DOI
Sathish T., Sabarirajan N., Saravanan R. Nano-alumina reinforcement on AA 8079 acquired from waste aluminium food containers for altering microhardness and wear resistance. J. Mater. Res. Technol. 2021;14:1494–1503. doi: 10.1016/j.jmrt.2021.07.041. DOI
Shah H.P., Badheka J.V. Friction stir welding of aluminum alloys: An overview of experimental findings—Process, variables, development and applications. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019;233:1191–1226. doi: 10.1177/1464420716689588. DOI
Sathish T., Kaladgi A.R.R., Mohanavel V., Arul K., Afzal A., Aabid A., Saleh B. Experimental Investigation of the Friction Stir Weldability of AA8006 with Zirconia Particle Reinforcement and Optimized Process Parameters. Materials. 2021;14:2782. doi: 10.3390/ma14112782. PubMed DOI PMC
Hwang C.L., Yoon K. Multiple Attribute Decision Making–Methods and Applications. Springer; Berlin/Heidelberg, Germany; New York, NY, USA: 1981.
Kou G., Lu Y., Peng Y., Shi Y. Evaluation of classification algorithms using MCDM and rank correlation. Int. J. Inf. Technol. Decis. Mak. 2016;11:197–225. doi: 10.1142/S0219622012500095. DOI
Zavadskas E.K., Turskis Z., Kildienė S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014;20:165–179. doi: 10.3846/20294913.2014.892037. DOI
Kittali P., Satheesh J., Kumar G.A., Madhusudhan T. A review on effects of reinforcements on mechanical and tribological behaviour of AMMC. Int. Res. J. Eng. Technol. 2016;3:2412.
Gowri Shankar M.C., Jayashree P.K., Shetty R., Kini A., Sharma S.S. Individual and Combined Effect of Reinforcements on Stir Cast Aluminum Metal Matrix Composites-A Review. Int. J. Curr. Eng. Technol. 2013;3:922–934.
Avettand-Fènoël M.-N., Simar A. A review about Friction Stir Welding of metal matrix composites. Mater. Charact. 2016;120:1–17. doi: 10.1016/j.matchar.2016.07.010. DOI
Ceschini L., Boromei I., Minak G., Morri A., Tarterini F. Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10vol.%Al2O3p composite. Compos. Sci. Technol. 2007;67:605–615. doi: 10.1016/j.compscitech.2006.07.029. DOI
Chakraborty S., Bhattacharyya O., Zavadskas E.K., Antucheviciene J. Application of WASPAS Method as an Optimization Tool in Non-traditional Machining Processes. Inf. Technol. Control. 2015;44:44–55.
Zavadskas E.K., Turskis Z., Antucheviciene J., Zakarevicius A. Optimization of Weighted Aggregated Sum Product Assessment. Elektron. Elektrotech. 2012;6:3–6. doi: 10.5755/j01.eee.122.6.1810. DOI
Chakraborty S., Zavadskas E.K. Applications of WASPAS Method in Manufacturing Decision Making. Informatica. 2014;25:1–20. doi: 10.15388/Informatica.2014.01. DOI
Karabašević D., Stanujkić D., Urošević S., Maksimović M. An Approach to Personnel Selection based on SWARA and WASPAS Methods. Bizinfo Blace J. Econ. Manag. Inform. 2016;7:1–11. doi: 10.5937/bizinfo1601001K. DOI
Zavadskas E.K., Antucheviciene J., Saparauskas J., Turskis Z. MCDM Methods WASPAS and MULTIMOORA: Verification of Robustness of Methods when Assessing Alternative Solutions. Econ. Comput. Econ. Cybern. Stud. Res. 2013;47:5–20.