Optimizing Friction Stir Welding of Dissimilar Grades of Aluminum Alloy Using WASPAS

. 2022 Feb 24 ; 15 (5) : . [epub] 20220224

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35268941

Aluminum is a widely popular material due to its low cost, low weight, good formability and capability to be machined easily. When a non-metal such as ceramic is added to aluminum alloy, it forms a composite. Metal Matrix Composites (MMCs) are emerging as alternatives to conventional metals due to their ability to withstand heavy load, excellent resistance to corrosion and wear, and comparatively high hardness and toughness. Aluminum Matrix Composites (AMCs), the most popular category in MMCs, have innumerable applications in various fields such as scientific research, structural, automobile, marine, aerospace, domestic and construction. Their attractive properties such as high strength-to-weight ratio, high hardness, high impact strength and superior tribological behavior enable them to be used in automobile components, aviation structures and parts of ships. Thus, in this research work an attempt has been made to fabricate Aluminum Alloys and Aluminum Matrix Composites (AMCs) using the popular synthesis technique called stir casting and join them by friction stir welding (FSW). Dissimilar grades of aluminum alloy, i.e., Al 6061 and Al 1100, are used for the experimental work. Alumina and Silicon Carbide are used as reinforcement with the aluminum matrix. Mechanical and corrosion properties are experimentally evaluated. The FSW process is analyzed by experimentally comparing the welded alloys and welded composites. Finally, the best suitable FSW combination is selected with the help of a Multi-Attribute Decision Making (MADM)-based numerical optimization technique called Weighted Aggregated Sum Product Assessment (WASPAS).

Zobrazit více v PubMed

Bodunrin M.O., Alaneme K.K., Chown L.H. Aluminum matrix hybrid composites: A review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 2015;169:1–12.

Bharath V., Nagaral M., Auradi V., Kori S.A. Preparation of Al6061-Al2O3 MMCs by stir casting and evaluation of mechanical and wear properties. Procedia Mater. Sci. 2014;6:1658–1667. doi: 10.1016/j.mspro.2014.07.151. DOI

Sathish T., Sabarirajan N., Saravanan R. Nano-alumina reinforcement on AA 8079 acquired from waste aluminium food containers for altering microhardness and wear resistance. J. Mater. Res. Technol. 2021;14:1494–1503. doi: 10.1016/j.jmrt.2021.07.041. DOI

Shah H.P., Badheka J.V. Friction stir welding of aluminum alloys: An overview of experimental findings—Process, variables, development and applications. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019;233:1191–1226. doi: 10.1177/1464420716689588. DOI

Sathish T., Kaladgi A.R.R., Mohanavel V., Arul K., Afzal A., Aabid A., Saleh B. Experimental Investigation of the Friction Stir Weldability of AA8006 with Zirconia Particle Reinforcement and Optimized Process Parameters. Materials. 2021;14:2782. doi: 10.3390/ma14112782. PubMed DOI PMC

Hwang C.L., Yoon K. Multiple Attribute Decision Making–Methods and Applications. Springer; Berlin/Heidelberg, Germany; New York, NY, USA: 1981.

Kou G., Lu Y., Peng Y., Shi Y. Evaluation of classification algorithms using MCDM and rank correlation. Int. J. Inf. Technol. Decis. Mak. 2016;11:197–225. doi: 10.1142/S0219622012500095. DOI

Zavadskas E.K., Turskis Z., Kildienė S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014;20:165–179. doi: 10.3846/20294913.2014.892037. DOI

Kittali P., Satheesh J., Kumar G.A., Madhusudhan T. A review on effects of reinforcements on mechanical and tribological behaviour of AMMC. Int. Res. J. Eng. Technol. 2016;3:2412.

Gowri Shankar M.C., Jayashree P.K., Shetty R., Kini A., Sharma S.S. Individual and Combined Effect of Reinforcements on Stir Cast Aluminum Metal Matrix Composites-A Review. Int. J. Curr. Eng. Technol. 2013;3:922–934.

Avettand-Fènoël M.-N., Simar A. A review about Friction Stir Welding of metal matrix composites. Mater. Charact. 2016;120:1–17. doi: 10.1016/j.matchar.2016.07.010. DOI

Ceschini L., Boromei I., Minak G., Morri A., Tarterini F. Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10vol.%Al2O3p composite. Compos. Sci. Technol. 2007;67:605–615. doi: 10.1016/j.compscitech.2006.07.029. DOI

Chakraborty S., Bhattacharyya O., Zavadskas E.K., Antucheviciene J. Application of WASPAS Method as an Optimization Tool in Non-traditional Machining Processes. Inf. Technol. Control. 2015;44:44–55.

Zavadskas E.K., Turskis Z., Antucheviciene J., Zakarevicius A. Optimization of Weighted Aggregated Sum Product Assessment. Elektron. Elektrotech. 2012;6:3–6. doi: 10.5755/j01.eee.122.6.1810. DOI

Chakraborty S., Zavadskas E.K. Applications of WASPAS Method in Manufacturing Decision Making. Informatica. 2014;25:1–20. doi: 10.15388/Informatica.2014.01. DOI

Karabašević D., Stanujkić D., Urošević S., Maksimović M. An Approach to Personnel Selection based on SWARA and WASPAS Methods. Bizinfo Blace J. Econ. Manag. Inform. 2016;7:1–11. doi: 10.5937/bizinfo1601001K. DOI

Zavadskas E.K., Antucheviciene J., Saparauskas J., Turskis Z. MCDM Methods WASPAS and MULTIMOORA: Verification of Robustness of Methods when Assessing Alternative Solutions. Econ. Comput. Econ. Cybern. Stud. Res. 2013;47:5–20.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...