• This record comes from PubMed

Thermo-Mechanical Behavior of Aluminum Matrix Nano-Composite Automobile Disc Brake Rotor Using Finite Element Method

. 2022 Sep 01 ; 15 (17) : . [epub] 20220901

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Analysis of mechanical and thermal behaviors during braking has become an increasingly important issue in many transport sectors for different modes of transportation. Brake failure generated during braking is a complex phenomenon confronting automobile manufacturers and designers. During braking, kinetic energy is transferred to thermal energy, resulting in the intense heating of disc brake rotors that increases proportionally with vehicle speed, mass, and braking frequency. It is essential to look into and improve strategies to make versatile, thermally resistant, lightweight, high-performance discs. As a result, this study uses the finite element method to conduct a thermo-mechanical analysis of aluminum alloy and aluminum matrix nano-composite disc brake rotors to address the abovementioned issues. The FEA method is used for the thermo-mechanical analysis of AMNCs for vented disc brake rotor during emergency braking at 70 km/h. From the results obtained, aluminum base metal matrix nano-composites have an excellent strength-to-weight ratio when used as disc brake rotor materials, significantly improving the discs' thermal and mechanical performance. From the result of transient thermal analysis, the maximum value of heat flux obtained for aluminum alloy disc is about 8 W/mm2, whereas for AMNCs, the value is increased to 16.28 W/mm2. The result from static analysis shows that the maximum deformation observed is 0.19 mm for aluminum alloy disc and 0.05 mm for AMNCs disc. In addition, the maximum von Mises stress value of AMNC disc is about 184 MPa. The maximum von Mises stress value of aluminum alloy disc is about 180 MPa. Therefore, according to the results, the proposed aluminum base metal matrix nano-composites are valid for replacing existing materials for disc brake rotor applications.

See more in PubMed

Din S.H., Shah M.A., Sheikh N.A., Butt M.M. Nano-Composites and their Applications: A review. Charact. Appl. Nanomater. 2020;3:875. doi: 10.24294/can.v3i1.875. DOI

Rashid A. Overview of disc brakes and related phenomena—A review. Int. J. Veh. Noise Vib. 2014;10:257–301. doi: 10.1504/IJVNV.2014.065634. DOI

Maleque M., Adebisi A., Shah Q. Energy and Cost Analysis of Weight Reduction using Composite Brake Rotor. Int. J. Veh. Struct. Syst. 2012;4:69–73. doi: 10.4273/ijvss.4.2.06. DOI

Fatchurrohman N., Marini C.D., Suraya S., Iqbal A.A. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis. IOP Conf. Ser. Mater. Sci. Eng. 2016;114:012107. doi: 10.1088/1757-899X/114/1/012107. DOI

Singh K.K., Singh S., Shrivastava A.K. Study of Tribological Behavior of Silicon Carbide Based Aluminium Metal Matrix Composites under Dry and Lubricated Environment. Adv. Mater. Sci. Eng. 2016;2016:3813412. doi: 10.1155/2016/3813412. DOI

Maluf O., Milan M.T., Angeloni M., Spinelli D., Bose Filho W.W. Development of Materials for Automotive Disc Brakes. Minerva. 2007;4:149–158.

Ripin Z.B.M. Ph.D. Thesis. University of Leeds; Leeds, UK: Sep, 1995. Analysis of Disc Brake Squeal Using the Finite Element Method.

Anand G., Amal K.G., Athul Varma S., Krishnaprasad C.T., Rakesh S. Structural and Thermal Analysis of Brake Disc with Grey Cast Iron and Cenosphere-Aluminium Composite. IRJET. 2021;8:1092–1097.

Awe S.A. Developing Material Requirements for Automotive Brake Disc. Mod. Concepts Mater. Sci. 2019;2:1–4. doi: 10.33552/MCMS.2019.02.000531. DOI

Nathi G.M., Charyulu T.N., Gowtham K., Satish Reddy P. Coupled Structual/Thermal Analysis of Disc Brake. Int. J. Res. Eng. Technol. 2012;1:539–553. doi: 10.15623/ijret.2012.0104004. DOI

Black T.A., Fine C.H., Sachs E.M. A Method for Systems Design Using Precedence Relationships: An Application to Automotive Brake Systems. MIT; Cambridge, MA, USA: 1990.

Maleque M.A., Dyuti S., Rahman M.M. Material selection method in design of automotive brake disc; Proceedings of the WCE 2010-World Congress on Engineering; London, UK. 30 June–2 July 2010; pp. 2322–2326.

Shanker P.S. A review on properties of conventional and metal matrix composite materials in manufacturing of disc brake. Mater. Today Proc. 2018;5:5864–5869. doi: 10.1016/j.matpr.2017.12.184. DOI

Hayidso T.H., Gemeda D.O., Abraham A.M. Identifying Road Traffic Accidents Hotspots Areas Using GIS in Ethiopia: A Case Study of Hosanna Town. Transp. Telecommun. J. 2019;20:123–132. doi: 10.2478/ttj-2019-0011. DOI

Maheshwari N., Choudhary J., Rath A., Shinde D., Kalita K. Finite Element Analysis and Multi-criteria Decision-Making (MCDM)-Based Optimal Design Parameter Selection of Solid Ventilated Brake Disc. J. Inst. Eng. Ser. C. 2021;102:349–359. doi: 10.1007/s40032-020-00650-y. DOI

Kalita K., Shinde D., Chakraborty S. Grey wolf optimizer-based design of ventilated brake disc. J. Braz. Soc. Mech. Sci. Eng. 2021;43:405. doi: 10.1007/s40430-021-03125-y. DOI

Shinde D., Öktem H., Kalita K., Chakraborty S., Gao X.-Z. Optimization of Process Parameters for Friction Materials Using Multi-Criteria Decision Making: A Comparative Analysis. Processes. 2021;9:1570. doi: 10.3390/pr9091570. DOI

Abdullah O.I., Belhocine A. A thermomechanical model for the analysis of disc brake using the finite element method in frictional contact. J. Eng. Res. 2021

Thakre S., Shahare A., Awari G.K. Investigation of Thermal Response of Disc Brake System: A Review. IOP Conf. Ser. Mater Sci. Eng. 2021;1170:012010. doi: 10.1088/1757-899X/1170/1/012010. DOI

Stojanović N., Abdullah O.I., Glišović J., Grujic I., Dorić J. Investigation of Thermal Behavior of Brake System Using Alternative Materials. Heat Transf. Res. 2020;51:1609–1623. doi: 10.1615/HeatTransRes.2020035198. DOI

Belhocine A. Finite Element Analysis of Automotive Disk Brake and Pad in Frictional Model Contact. ADMT J. 2014;7:27–40.

Jiang L., Jiang Y., Yu L., Yang H., Li Z., Ding Y. Thermo-mechanical coupling analyses for al alloy brake discs with Al2O3-SiC (3D)/Al alloy composite wear-resisting surface layer for high-speed trains. Materials. 2019;12:3155. doi: 10.3390/ma12193155. PubMed DOI PMC

Sharath B., Venkatesh C., Afzal A., Aslfattahi N., Aabid A., Baig M., Saleh B. Multi Ceramic Particles Inclusion in the Aluminium Matrix and Wear Characterization through Experimental and Response Surface-Artificial Neural Networks. Materials. 2021;14:2895. doi: 10.3390/ma14112895. PubMed DOI PMC

Baig M.M.A., Al-Qutub A.M., Allam I.M., Patel F., Mohammed A.S. Tribological Performance of Sub-Micron Al2O3-Reinforced Aluminium Composite Brake Rotor Material. Arab. J. Sci. Eng. 2021;46:2691–2700. doi: 10.1007/s13369-020-05179-x. DOI

Deme D. Road Traffic Accident in Ethiopia from 2007/08-2017/18. Am. Int. J. Sci. Eng. Res. 2019;2:49–59. doi: 10.46545/aijser.v2i2.90. DOI

Rajesh P.V., Gupta K.K., Čep R., Ramachandran M., Kouřil K., Kalita K. Optimizing Friction Stir Welding of Dissimilar Grades of Aluminium Alloy Using WASPAS. Materials. 2022;15:1715. doi: 10.3390/ma15051715. PubMed DOI PMC

Belhocine A., Bouchetara M. Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermomechanical coupling model. Ain Shams Eng. J. 2013;4:475–483. doi: 10.1016/j.asej.2012.08.005. DOI

Kalita K., Shinde D., Thomas T.T. Non-dimensional Stress Analysis of an Orthotropic Plate. Mater. Today Proc. 2015;2:3527–3533. doi: 10.1016/j.matpr.2015.07.329. DOI

Kalita K., Shinde D., Haldar S. Analysis on Transverse Bending of Rectangular Plate. Mater. Today Proc. 2015;2:2146–2154. doi: 10.1016/j.matpr.2015.07.221. DOI

Belhocine A., Bouchetara M. Structural and Thermal Analysis of Automotive Disc Brake Rotor. Arch. Mech. Eng. 2014;61:89–113. doi: 10.2478/meceng-2014-0005. DOI

Belhocine A., Abu Bakar A.R., Abdullah O. Structural and Contact Analysis of Disc Brake Assembly During Single Stop Braking Event. Trans. Indian Inst. Met. 2014;68:403–410. doi: 10.1007/s12666-014-0468-6. DOI

Ishak M.R., Abu Bakar A.R., Belhocine A., Taib J.M., Omar W.Z.W. Brake torque analysis of fully mechanical parking brake system: Theoretical and experimental approach. Measurement. 2016;94:487–497. doi: 10.1016/j.measurement.2016.08.026. DOI

Stojanovic B., Glisovic J. Application of Ceramic Matrix Composite in Automotive Industry. Encycl. Mater. Compos. 2020;2:275–292. doi: 10.1016/b978-0-12-819724-0.00018-5. DOI

Ahmed G.M.S., Algarni S. Design, Development and FE Thermal Analysis of a Radially Grooved Brake Disc Developed through Direct Metal Laser Sintering. Materials. 2018;11:1211. doi: 10.3390/ma11071211. PubMed DOI PMC

Seelam A.B., Hussain N.A.Z., Krishanmurthy S.H. Design and analysis of disc brake system in high speed vehicles. Int. J. Simul. Multidiscip. Des. Optim. 2021;12:19. doi: 10.1051/smdo/2021019. DOI

Belhocine A., Omar W.Z.W. A numerical parametric study of mechanical behavior of dry contact slipping on the disc–pads interface. Alex. Eng. J. 2016;55:1127–1141. doi: 10.1016/j.aej.2016.03.025. DOI

Chavan C.B., More A.S., Patil N.N., Baskar P. Static structural and thermal analysis of brake disc with different cut patterns. J. Appl. Res. Technol. 2018;16:41–52. doi: 10.22201/icat.16656423.2018.16.1.702. DOI

Bhat A., Pal B., Dandotiya D. Structural Analysis of a Two-Wheeler Disc Brake. IOP Conf. Ser. Mater. Sci. Eng. 2021;1013:012024. doi: 10.1088/1757-899X/1013/1/012024. DOI

Gurram P., Komakula S.A., Kumar G.V. Design and analysis of vented disc brake rotor. Int. J. Appl. Eng. Res. 2019;14:2228–2233.

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...