Thermo-Mechanical Behavior of Aluminum Matrix Nano-Composite Automobile Disc Brake Rotor Using Finite Element Method
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36079453
PubMed Central
PMC9457784
DOI
10.3390/ma15176072
PII: ma15176072
Knihovny.cz E-resources
- Keywords
- aluminum alloy, aluminum matrix nano-composites, disc brake, finite element analysis, thermo-mechanical analysis,
- Publication type
- Journal Article MeSH
Analysis of mechanical and thermal behaviors during braking has become an increasingly important issue in many transport sectors for different modes of transportation. Brake failure generated during braking is a complex phenomenon confronting automobile manufacturers and designers. During braking, kinetic energy is transferred to thermal energy, resulting in the intense heating of disc brake rotors that increases proportionally with vehicle speed, mass, and braking frequency. It is essential to look into and improve strategies to make versatile, thermally resistant, lightweight, high-performance discs. As a result, this study uses the finite element method to conduct a thermo-mechanical analysis of aluminum alloy and aluminum matrix nano-composite disc brake rotors to address the abovementioned issues. The FEA method is used for the thermo-mechanical analysis of AMNCs for vented disc brake rotor during emergency braking at 70 km/h. From the results obtained, aluminum base metal matrix nano-composites have an excellent strength-to-weight ratio when used as disc brake rotor materials, significantly improving the discs' thermal and mechanical performance. From the result of transient thermal analysis, the maximum value of heat flux obtained for aluminum alloy disc is about 8 W/mm2, whereas for AMNCs, the value is increased to 16.28 W/mm2. The result from static analysis shows that the maximum deformation observed is 0.19 mm for aluminum alloy disc and 0.05 mm for AMNCs disc. In addition, the maximum von Mises stress value of AMNC disc is about 184 MPa. The maximum von Mises stress value of aluminum alloy disc is about 180 MPa. Therefore, according to the results, the proposed aluminum base metal matrix nano-composites are valid for replacing existing materials for disc brake rotor applications.
See more in PubMed
Din S.H., Shah M.A., Sheikh N.A., Butt M.M. Nano-Composites and their Applications: A review. Charact. Appl. Nanomater. 2020;3:875. doi: 10.24294/can.v3i1.875. DOI
Rashid A. Overview of disc brakes and related phenomena—A review. Int. J. Veh. Noise Vib. 2014;10:257–301. doi: 10.1504/IJVNV.2014.065634. DOI
Maleque M., Adebisi A., Shah Q. Energy and Cost Analysis of Weight Reduction using Composite Brake Rotor. Int. J. Veh. Struct. Syst. 2012;4:69–73. doi: 10.4273/ijvss.4.2.06. DOI
Fatchurrohman N., Marini C.D., Suraya S., Iqbal A.A. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis. IOP Conf. Ser. Mater. Sci. Eng. 2016;114:012107. doi: 10.1088/1757-899X/114/1/012107. DOI
Singh K.K., Singh S., Shrivastava A.K. Study of Tribological Behavior of Silicon Carbide Based Aluminium Metal Matrix Composites under Dry and Lubricated Environment. Adv. Mater. Sci. Eng. 2016;2016:3813412. doi: 10.1155/2016/3813412. DOI
Maluf O., Milan M.T., Angeloni M., Spinelli D., Bose Filho W.W. Development of Materials for Automotive Disc Brakes. Minerva. 2007;4:149–158.
Ripin Z.B.M. Ph.D. Thesis. University of Leeds; Leeds, UK: Sep, 1995. Analysis of Disc Brake Squeal Using the Finite Element Method.
Anand G., Amal K.G., Athul Varma S., Krishnaprasad C.T., Rakesh S. Structural and Thermal Analysis of Brake Disc with Grey Cast Iron and Cenosphere-Aluminium Composite. IRJET. 2021;8:1092–1097.
Awe S.A. Developing Material Requirements for Automotive Brake Disc. Mod. Concepts Mater. Sci. 2019;2:1–4. doi: 10.33552/MCMS.2019.02.000531. DOI
Nathi G.M., Charyulu T.N., Gowtham K., Satish Reddy P. Coupled Structual/Thermal Analysis of Disc Brake. Int. J. Res. Eng. Technol. 2012;1:539–553. doi: 10.15623/ijret.2012.0104004. DOI
Black T.A., Fine C.H., Sachs E.M. A Method for Systems Design Using Precedence Relationships: An Application to Automotive Brake Systems. MIT; Cambridge, MA, USA: 1990.
Maleque M.A., Dyuti S., Rahman M.M. Material selection method in design of automotive brake disc; Proceedings of the WCE 2010-World Congress on Engineering; London, UK. 30 June–2 July 2010; pp. 2322–2326.
Shanker P.S. A review on properties of conventional and metal matrix composite materials in manufacturing of disc brake. Mater. Today Proc. 2018;5:5864–5869. doi: 10.1016/j.matpr.2017.12.184. DOI
Hayidso T.H., Gemeda D.O., Abraham A.M. Identifying Road Traffic Accidents Hotspots Areas Using GIS in Ethiopia: A Case Study of Hosanna Town. Transp. Telecommun. J. 2019;20:123–132. doi: 10.2478/ttj-2019-0011. DOI
Maheshwari N., Choudhary J., Rath A., Shinde D., Kalita K. Finite Element Analysis and Multi-criteria Decision-Making (MCDM)-Based Optimal Design Parameter Selection of Solid Ventilated Brake Disc. J. Inst. Eng. Ser. C. 2021;102:349–359. doi: 10.1007/s40032-020-00650-y. DOI
Kalita K., Shinde D., Chakraborty S. Grey wolf optimizer-based design of ventilated brake disc. J. Braz. Soc. Mech. Sci. Eng. 2021;43:405. doi: 10.1007/s40430-021-03125-y. DOI
Shinde D., Öktem H., Kalita K., Chakraborty S., Gao X.-Z. Optimization of Process Parameters for Friction Materials Using Multi-Criteria Decision Making: A Comparative Analysis. Processes. 2021;9:1570. doi: 10.3390/pr9091570. DOI
Abdullah O.I., Belhocine A. A thermomechanical model for the analysis of disc brake using the finite element method in frictional contact. J. Eng. Res. 2021
Thakre S., Shahare A., Awari G.K. Investigation of Thermal Response of Disc Brake System: A Review. IOP Conf. Ser. Mater Sci. Eng. 2021;1170:012010. doi: 10.1088/1757-899X/1170/1/012010. DOI
Stojanović N., Abdullah O.I., Glišović J., Grujic I., Dorić J. Investigation of Thermal Behavior of Brake System Using Alternative Materials. Heat Transf. Res. 2020;51:1609–1623. doi: 10.1615/HeatTransRes.2020035198. DOI
Belhocine A. Finite Element Analysis of Automotive Disk Brake and Pad in Frictional Model Contact. ADMT J. 2014;7:27–40.
Jiang L., Jiang Y., Yu L., Yang H., Li Z., Ding Y. Thermo-mechanical coupling analyses for al alloy brake discs with Al2O3-SiC (3D)/Al alloy composite wear-resisting surface layer for high-speed trains. Materials. 2019;12:3155. doi: 10.3390/ma12193155. PubMed DOI PMC
Sharath B., Venkatesh C., Afzal A., Aslfattahi N., Aabid A., Baig M., Saleh B. Multi Ceramic Particles Inclusion in the Aluminium Matrix and Wear Characterization through Experimental and Response Surface-Artificial Neural Networks. Materials. 2021;14:2895. doi: 10.3390/ma14112895. PubMed DOI PMC
Baig M.M.A., Al-Qutub A.M., Allam I.M., Patel F., Mohammed A.S. Tribological Performance of Sub-Micron Al2O3-Reinforced Aluminium Composite Brake Rotor Material. Arab. J. Sci. Eng. 2021;46:2691–2700. doi: 10.1007/s13369-020-05179-x. DOI
Deme D. Road Traffic Accident in Ethiopia from 2007/08-2017/18. Am. Int. J. Sci. Eng. Res. 2019;2:49–59. doi: 10.46545/aijser.v2i2.90. DOI
Rajesh P.V., Gupta K.K., Čep R., Ramachandran M., Kouřil K., Kalita K. Optimizing Friction Stir Welding of Dissimilar Grades of Aluminium Alloy Using WASPAS. Materials. 2022;15:1715. doi: 10.3390/ma15051715. PubMed DOI PMC
Belhocine A., Bouchetara M. Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermomechanical coupling model. Ain Shams Eng. J. 2013;4:475–483. doi: 10.1016/j.asej.2012.08.005. DOI
Kalita K., Shinde D., Thomas T.T. Non-dimensional Stress Analysis of an Orthotropic Plate. Mater. Today Proc. 2015;2:3527–3533. doi: 10.1016/j.matpr.2015.07.329. DOI
Kalita K., Shinde D., Haldar S. Analysis on Transverse Bending of Rectangular Plate. Mater. Today Proc. 2015;2:2146–2154. doi: 10.1016/j.matpr.2015.07.221. DOI
Belhocine A., Bouchetara M. Structural and Thermal Analysis of Automotive Disc Brake Rotor. Arch. Mech. Eng. 2014;61:89–113. doi: 10.2478/meceng-2014-0005. DOI
Belhocine A., Abu Bakar A.R., Abdullah O. Structural and Contact Analysis of Disc Brake Assembly During Single Stop Braking Event. Trans. Indian Inst. Met. 2014;68:403–410. doi: 10.1007/s12666-014-0468-6. DOI
Ishak M.R., Abu Bakar A.R., Belhocine A., Taib J.M., Omar W.Z.W. Brake torque analysis of fully mechanical parking brake system: Theoretical and experimental approach. Measurement. 2016;94:487–497. doi: 10.1016/j.measurement.2016.08.026. DOI
Stojanovic B., Glisovic J. Application of Ceramic Matrix Composite in Automotive Industry. Encycl. Mater. Compos. 2020;2:275–292. doi: 10.1016/b978-0-12-819724-0.00018-5. DOI
Ahmed G.M.S., Algarni S. Design, Development and FE Thermal Analysis of a Radially Grooved Brake Disc Developed through Direct Metal Laser Sintering. Materials. 2018;11:1211. doi: 10.3390/ma11071211. PubMed DOI PMC
Seelam A.B., Hussain N.A.Z., Krishanmurthy S.H. Design and analysis of disc brake system in high speed vehicles. Int. J. Simul. Multidiscip. Des. Optim. 2021;12:19. doi: 10.1051/smdo/2021019. DOI
Belhocine A., Omar W.Z.W. A numerical parametric study of mechanical behavior of dry contact slipping on the disc–pads interface. Alex. Eng. J. 2016;55:1127–1141. doi: 10.1016/j.aej.2016.03.025. DOI
Chavan C.B., More A.S., Patil N.N., Baskar P. Static structural and thermal analysis of brake disc with different cut patterns. J. Appl. Res. Technol. 2018;16:41–52. doi: 10.22201/icat.16656423.2018.16.1.702. DOI
Bhat A., Pal B., Dandotiya D. Structural Analysis of a Two-Wheeler Disc Brake. IOP Conf. Ser. Mater. Sci. Eng. 2021;1013:012024. doi: 10.1088/1757-899X/1013/1/012024. DOI
Gurram P., Komakula S.A., Kumar G.V. Design and analysis of vented disc brake rotor. Int. J. Appl. Eng. Res. 2019;14:2228–2233.