Pre-Acclimation to Elevated Temperature Stabilizes the Activity of Photosystem I in Wheat Plants Exposed to an Episode of Severe Heat Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 1-0683-20
Ministry of Education, Science, Research and Sport of the Slovak Republic
APVV-18-465
Slovak Research and Development Agency
OPVaI-VA/DP/2018/No. 313011T813
Ministry of Economy of the Slovak Republic
PubMed
35270085
PubMed Central
PMC8912596
DOI
10.3390/plants11050616
PII: plants11050616
Knihovny.cz E-zdroje
- Klíčová slova
- acclimation, chlorophyll fluorescence, heat stress, photosynthesis, wheat,
- Publikační typ
- časopisecké články MeSH
The importance of high temperature as an environmental factor is growing in proportion to deepening global climate change. The study aims to evaluate the effects of long-term acclimation of plants to elevated temperature on the tolerance of their photosynthetic apparatus to heat stress. Three wheat (Triticum sp. L.) genotypes differing in leaf and photosynthetic traits were analyzed: Thesee, Roter Samtiger Kolbenweizen, and ANK 32A. The pot experiment was established in natural conditions outdoors (non-acclimated variant), from which a part of the plants was placed in foil tunnel with elevated temperature for 14 days (high temperature-acclimated variant). A severe heat stress screening experiment was induced by an exposition of the plans in a growth chamber with artificial light and air temperature up to 45 °C for ~12 h before the measurements. The measurements of leaf photosynthetic CO2 assimilation, stomatal conductance, and rapid kinetics of chlorophyll a fluorescence was performed. The results confirmed that a high temperature drastically reduced the photosynthetic assimilation rate caused by the non-stomatal (biochemical) limitation of photosynthetic processes. On the other hand, the chlorophyll fluorescence indicated only a moderate level of decrease of quantum efficiency of photosystem (PS) II (Fv/Fm parameter), indicating mostly reversible heat stress effects. The heat stress led to a decrease in the number of active PS II reaction centers (RC/ABS) and overall activity o PSII (PIabs) in all genotypes, whereas the PS I (parameter ψREo) was negatively influenced by heat stress in the non-acclimated variant only. Our results showed that the genotypes differ in acclimation capacity to heat stress, and rapid noninvasive techniques may help screen the stress effects and identify more tolerant crop genotypes. The acclimation was demonstrated more at the PS I level, which may be associated with the upregulation of alternative photosynthetic electron transport pathways with clearly protective functions.
Zobrazit více v PubMed
Duc N.H., Csintalan Z., Posta K. Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol. Biochem. 2018;132:297–307. doi: 10.1016/j.plaphy.2018.09.011. PubMed DOI
Tarvainen L., Wittemann M., Mujawamariya M., Manishimwe A., Zibera E., Ntirugulirwa B., Ract C., Manzi O.J.L., Andersson M.X., Spetea C., et al. Handling the heat-photosynthetic thermal stress in tropical trees. New Phytol. 2022;23:236–250. doi: 10.1111/nph.17809. PubMed DOI
Ainsworth E.A., Ort D.R. How do we improve crop production in a warming world? Plant Biol. 2010;154:526–530. doi: 10.1104/pp.110.161349. PubMed DOI PMC
Hussain S., Ulhassan Z., Brestic M., Zivcak M., Zhou W., Allakhverdiev S.I., Liu W. Photosynthesis research under climate change. Photosynth. Res. 2021;150:5–19. doi: 10.1007/s11120-021-00861-z. PubMed DOI
Wahid A., Gelani S., Ashraf M., Foolad M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007;61:199–223. doi: 10.1016/j.envexpbot.2007.05.011. DOI
Niinemets Ü. When leaves go over the thermal edge. Plant Cell Environ. 2018;41:1247–1250. doi: 10.1111/pce.13184. PubMed DOI
Shanmugam S., Kjaer K.H., Ottosen C.O., Rosenqvist E., Kumari Sharma D., Wollenweber B. The Alleviating Effect of Elevated CO2 on Heat Stress Susceptibility of Two Wheat (Triticum aestivum L.) Cultivars. J. Agron. Crop Sci. 2013;199:340–350. doi: 10.1111/jac.12023. DOI
Fischer R.A. Wheat physiology: A review of recent developments. Crop Pasture Sci. 2011;62:95–114. doi: 10.1071/CP10344. DOI
Howarth C.J. Genetic improvements of tolerance to high temperature. In: Ashraf M., Harris P., editors. Abiotic Stresses. CRC Press; Boca Raton, FL, USA: 2005. pp. 299–322.
Schoeffl F., Prandl R., Reindl A. Molecular responses to heat stress. In: Shinozaki K., Yamaguchi-Shinozaki K., editors. Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. R.G. Landes Co.; Austin, TX, USA: 1999. pp. 81–98.
Berry J., Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 1980;31:491–543. doi: 10.1146/annurev.pp.31.060180.002423. DOI
Hueve K., Bichele I., Rasulov B., Niinemets Ü.L.O. When it is too hot for photosynthesis: Heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ. 2011;34:113–126. doi: 10.1111/j.1365-3040.2010.02229.x. PubMed DOI
Havaux M., Tardy F. Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: Possible involvement of xanthophyll-cycle pigments. Planta. 1996;198:324–333. doi: 10.1007/BF00620047. DOI
Camejo D., Rodríguez P., Morales M.A., Dell’Amico J.M., Torrecillas A., Alarcón J.J. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 2005;162:281–289. doi: 10.1016/j.jplph.2004.07.014. PubMed DOI
Yamane Y., Kashino Y., Koike H., Satoh K. Effects of high temperatures on the photosynthetic systems in spinach: Oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth. Res. 1998;57:51–59. doi: 10.1023/A:1006019102619. DOI
Nishiyama Y., Murata N. Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl. Microbiol. Biotechnol. 2014;98:8777–8796. doi: 10.1007/s00253-014-6020-0. PubMed DOI
Brestic M., Zivcak M., Kalaji H.M., Carpentier R., Allakhverdiev S.I. Photosystem II thermostability in situ: Environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol. Biochem. 2012;57:93–105. doi: 10.1016/j.plaphy.2012.05.012. PubMed DOI
Zivcak M., Brestic M., Balatova Z., Drevenakova P., Olsovska K., Kalaji H.M., Allakhverdiev S.I. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth. Res. 2013;117:529–546. doi: 10.1007/s11120-013-9885-3. PubMed DOI
Boucher N., Carpentier R. Heat-stress stimulation of oxygen uptake by photosystem I involves the reduction of superoxide radicals by specific electron donors. Photosynth. Res. 1993;35:213–218. doi: 10.1007/BF00016552. PubMed DOI
Zhang R., Sharkey T.D. Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth. Res. 2009;100:29–43. doi: 10.1007/s11120-009-9420-8. PubMed DOI
Fauset S., Oliveira L., Buckeridge M.S., Foyer C.H., Galbraith D., Tiwari R., Gloor M. Contrasting responses of stomatal conductance and photosynthetic capacity to warming and elevated CO2 in the tropical tree species Alchornea glandulosa under heatwave conditions. Environ. Exp. Bot. 2019;158:28–39. doi: 10.1016/j.envexpbot.2018.10.030. DOI
Slot M., Winter K. Photosynthetic acclimation to warming in tropical forest tree seedlings. J. Exp. Bot. 2017;68:2275–2284. doi: 10.1093/jxb/erx071. PubMed DOI PMC
Crafts-Brandner S.J., Salvucci M.E. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc. Natl. Acad. Sci. USA. 2000;97:13430–13435. doi: 10.1073/pnas.230451497. PubMed DOI PMC
Morales D., Rodríguez P., Dell’Amico J., Nicolas E., Torrecillas A., Sánchez-Blanco M.J. High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol. Plant. 2003;47:203–208. doi: 10.1023/B:BIOP.0000022252.70836.fc. DOI
Yamori W., Hikosaka K., Way D.A. Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynth. Res. 2014;119:101–117. doi: 10.1007/s11120-013-9874-6. PubMed DOI
Yamasaki T., Yamakawa T., Yamane Y., Koike H., Satoh K., Katoh S. Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiol. 2002;128:1087–1097. doi: 10.1104/pp.010919. PubMed DOI PMC
Posch B.C., Kariyawasam B.C., Bramley H., Coast O., Richards R.A., Reynolds M.P., Atkin O.K. Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. J. Exp. Bot. 2019;70:5051–5069. doi: 10.1093/jxb/erz257. PubMed DOI
Brestic M., Zivcak M., Hauptvogel P., Misheva S., Kocheva K., Yang X., Allakhverdiev S.I. Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions. Photosynth. Res. 2018;136:245–255. doi: 10.1007/s11120-018-0486-z. PubMed DOI
Botyanszka L., Zivcak M., Chovancek E., Sytar O., Barek V., Hauptvogel P., Brestic M. Chlorophyll fluorescence kinetics may be useful to identify early drought and irrigation effects on photosynthetic apparatus in field-grown wheat. Agronomy. 2020;10:1275. doi: 10.3390/agronomy10091275. DOI
Chovancek E., Zivcak M., Brestic M., Hussain S., Allakhverdiev S.I. The different patterns of post-heat stress responses in wheat genotypes: The role of the transthylakoid proton gradient in efficient recovery of leaf photosynthetic capacity. Photosynth. Res. 2021;150:179–193. doi: 10.1007/s11120-020-00812-0. PubMed DOI
Strasser R.J., Srivastava A., Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M., Pathre U., Mohanty P., editors. Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor and Francis; London, UK: 2000. pp. 443–480.
Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim. Biophys. Acta Bioenerg. 2010;1797:1313–1326. doi: 10.1016/j.bbabio.2010.03.008. PubMed DOI
Stirbet A. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B Biol. 2011;104:236–257. doi: 10.1016/j.jphotobiol.2010.12.010. PubMed DOI
Klughammer C., Schreiber U. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl. Notes. 2008;1:201–247.
Chovancek E., Zivcak M., Botyanszka L., Hauptvogel P., Yang X., Misheva S., Brestic M. Transient heat waves may affect the photosynthetic capacity of susceptible wheat genotypes due to insufficient photosystem I photoprotection. Plants. 2019;8:282. doi: 10.3390/plants8080282. PubMed DOI PMC
Gupta N.K., Agarwal S., Agarwal V.P. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiol. Plant. 2013;35:1837–1842. doi: 10.1007/s11738-013-1221-1. DOI
Mott K.A., Peak D. Stomatal responses to humidity and temperature in darkness. Plant Cell Environ. 2010;33:1084–1090. doi: 10.1111/j.1365-3040.2010.02129.x. PubMed DOI
Lahr E.C., Schade G.W., Crossett C.C., Watson M.R. Photosynthesis and isoprene emission from trees along an urban–rural gradient in Texas. Glob. Chang. Biol. Bioenerg. 2015;21:4221–4236. doi: 10.1111/gcb.13010. PubMed DOI
von Caemmerer S., Evans J.R. Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ. 2015;38:629–637. doi: 10.1111/pce.12449. PubMed DOI
Reynolds M.P., Nagarajan S., Razzaue M.A., Ageeb O.A.A. Wheat Special Report No. 42. CIMMYT; El Batán, Mexico: 1997. Using Canopy Temperature Depression to Select for Yield Potential of Wheat in Heat-Stressed Environmental.
Fischer R.A., Rees D., Sayre K.D., Lu Z.M., Condon A.G., Saavedra A.L. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci. 1998;38:1467–1475. doi: 10.2135/cropsci1998.0011183X003800060011x. DOI
Sinsawat V., Leipner J., Stamp P., Fracheboud Y. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ. Exp. Bot. 2004;52:123–129. doi: 10.1016/j.envexpbot.2004.01.010. DOI
Enami I., Kitamura M., Tomo T., Isokawa Y., Ohta H., Katoh S. Is the primary cause of thermal inactivation of oxygen evolution in spinach PS II membranes release of the extrinsic 33 kDa protein or of Mn? Biochim. Biophys. Acta BBA Bioenerg. 1994;1186:52–58. doi: 10.1016/0005-2728(94)90134-1. DOI
Force L., Critchley C., Van Rensen J.J.S. New fluorescence parameters formonitoring photosynthesis in plants. Photosynth. Res. 2003;78:17–33. doi: 10.1023/A:1026012116709. PubMed DOI
Tsimilli-Michael M. Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica. 2020;58:275–292. doi: 10.32615/ps.2019.150. DOI
Strasser R.J., Srivatsava A., Govindjee Polyphasic chlorophyll a fluorescence transients in plants and cyanobacteria. Photochem. Photobiol. 1995;61:32–42. doi: 10.1111/j.1751-1097.1995.tb09240.x. DOI
Redillas M.C.F.R., Jeong J.S., Strasser R.J., Kim Y.S., Kim J.K. JIP analysis on rice (Oryza sativa cv Nipponbare) grown under limited nitrogen conditions. J. Korean Soc. Appl. Biol. Chem. 2011;54:827–832. doi: 10.1007/BF03253169. DOI
Stirbet A., Lazár D., Kromdijk J. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica. 2018;56:86–104. doi: 10.1007/s11099-018-0770-3. DOI
Zivcak M., Olsovska K., Slamka P., Galambosova J., Rataj V., Shao H.B., Kalaji M.H., Brestic M. Measurements of chlorophyll fluorescence in different leaf positions may detect nitrogen deficiency in wheat. Zemdirbyste. 2014;101:437–444. doi: 10.13080/z-a.2014.101.056. DOI
Mishra R.K., Singhal G.S. Function of photosynthetic apparatus of intact wheat leaves under high light and heat-stress and its relationship with peroxidation of thylakoid lipids. Plant Physiol. 1992;98:1–6. doi: 10.1104/pp.98.1.1. PubMed DOI PMC
Bukhov N.G., Sabat S.C., Mohanty P. Analysis of chlorophyll a fluorescence changes in weak light in heat treated Amaranthus chloroplasts. Photosynth. Res. 1990;23:81–87. doi: 10.1007/BF00030066. PubMed DOI
Murchie E.H., Niyogi K.K. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol. 2011;155:86–92. doi: 10.1104/pp.110.168831. PubMed DOI PMC
Krause G.H., Weis E. Chlorophyll fluorescence and photosynthesis—The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1991;42:313–349. doi: 10.1146/annurev.pp.42.060191.001525. DOI
Strauss A.J., Krüger G.H.J., Strasser R.J., Heerden P.D.R.V. Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environ. Exp. Bot. 2006;56:147–157. doi: 10.1016/j.envexpbot.2005.01.011. DOI
Yan K., Chen P., Shao H., Shao C., Zhao S., Brestic M. Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PLoS ONE. 2013;8:e62100. doi: 10.1371/journal.pone.0062100. PubMed DOI PMC
Zivcak M., Brestic M., Kunderlikova K., Olsovska K., Allakhverdiev S.I. Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: Does activity of photosystem I play any role in OJIP rise? J. Photochem. Photobiol. B Biol. 2015;152:318–324. doi: 10.1016/j.jphotobiol.2015.08.024. PubMed DOI
Pšidová E., Živčák M., Stojnić S., Orlović S., Gömöry D., Kučerová J., Kalaji H.M. Altitude of origin influences the responses of PSII photochemistry to heat waves in European beech (Fagus sylvatica L.) Environ. Exp. Bot. 2018;152:97–106. doi: 10.1016/j.envexpbot.2017.12.001. DOI
Zivcak M., Brestic M., Botyanszka L., Chen Y.E., Allakhverdiev S.I. Phenotyping of isogenic chlorophyll-less bread and durum wheat mutant lines in relation to photoprotection and photosynthetic capacity. Photosynth. Res. 2019;139:239–251. PubMed
Brestic M., Zivcak M., Kunderlikova K., Allakhverdiev S.I. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynth. Res. 2016;130:251–266. doi: 10.1007/s11120-016-0249-7. PubMed DOI
Ferroni L., Živčak M., Sytar O., Kovár M., Watanabe N., Pancaldi S., Brestič M. Chlorophyll-depleted wheat mutants are disturbed in photosynthetic electron flow regulation but can retain an acclimation ability to a fluctuating light regime. Environ. Exp. Bot. 2020;178:104156. doi: 10.1016/j.envexpbot.2020.104156. DOI
Brestic M., Zivcak M., Kunderlikova K., Sytar O., Shao H., Kalaji H.M., Allakhverdiev S.I. Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth. Res. 2015;125:151–166. doi: 10.1007/s11120-015-0093-1. PubMed DOI
Tan S.L., Yang Y.J., Liu T., Zhang S.B., Huang W. Responses of photosystem I compared with photosystem II to combination of heat stress and fluctuating light in tobacco leaves. Plant Sci. 2020;292:110371. doi: 10.1016/j.plantsci.2019.110371. PubMed DOI
Allakhverdiev S.I., Kreslavski V.D., Klimov V.V., Los D.A., Carpentier R., Mohanty P. Heat stress, an overview of molecular responses in photosynthesis. Photosynth. Res. 2008;98:541–550. doi: 10.1007/s11120-008-9331-0. PubMed DOI
Foyer C.H., Neukermans J., Queval G., Noctor G., Harbinson J. Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot. 2012;63:1637–1661. doi: 10.1093/jxb/ers013. PubMed DOI
Wang Q.L., Chen J.H., He N.Y., Guo F.Q. Metabolic reprogramming in chloroplasts under heat stress in plants. Int. J. Mol. Sci. 2018;19:849. doi: 10.3390/ijms19030849. PubMed DOI PMC