Transient Heat Waves May Affect the Photosynthetic Capacity of Susceptible Wheat Genotypes Due to Insufficient Photosystem I Photoprotection

. 2019 Aug 12 ; 8 (8) : . [epub] 20190812

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31408991

Grantová podpora
APVV-15-0721 Agentúra na Podporu Výskumu a Vývoja
VEGA-1-0831-17 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

We assessed the photosynthetic responses of eight wheat varieties in conditions of a simulated heat wave in a transparent plastic tunnel for one week. We found that high temperatures (up to 38 °C at midday and above 20 °C at night) had a negative effect on the photosynthetic functions of the plants and provided differentiation of genotypes through sensitivity to heat. Measurements of gas exchange showed that the simulated heat wave led to a 40% decrease in photosynthetic activity on average in comparison to the control, with an unequal recovery of individual genotypes after a release from stress. Our results indicate that the ability to recover after heat stress was associated with an efficient regulation of linear electron transport and the prevention of over-reduction in the acceptor side of photosystem I.

Zobrazit více v PubMed

Pachauri R.K., Meyer L.A., editors. Climate Change 2014: Synthesis Report. IPCC; Geneva, Switzerland: 2014. Intergovernmental Panel on Climate Change.

Duan H., Wu J., Huang G., Zhou S., Liu W., Liao Y., Yang X., Xiao Z., Fan H. Individual and interactive effects of drought and heat on leaf physiology of seedlings in an economically important crop. AoB Plants. 2017;9:plw090. doi: 10.1093/aobpla/plw090. PubMed DOI PMC

Nuttall J.G., Barlow K.M., Delahunty A.J., Christy B.P., O’Leary G.J. Acute high temperature response in wheat. Agron. J. 2018;110:1296–1308. doi: 10.2134/agronj2017.07.0392. DOI

FAOSTAT Production of Wheat in World. [(accessed on 23 February 2019)]; Available online: http://www.fao.org/faostat/en/#data/QC/visualize.

Slafer G.A., Savin R., Sadras V.O. Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crops Res. 2014;157:71–83. doi: 10.1016/j.fcr.2013.12.004. DOI

Shanmugam S., Kjaer K.H., Ottosen C.O., Rosenqvist E., Kumari Sharma D., Wollenweber B. The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars. J. Agron. Crop. Sci. 2013;199:340–350. doi: 10.1111/jac.12023. DOI

Wahid A., Gelani S., Ashraf M., Foolad M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007;61:199–223. doi: 10.1016/j.envexpbot.2007.05.011. DOI

Ferris R., Ellis R.H., Wheeler T.R., Hadley P. Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann. Bot. 1998;82:631–639. doi: 10.1006/anbo.1998.0740. DOI

Barnabas B., Jager K., Feher A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008;31:11–38. doi: 10.1111/j.1365-3040.2007.01727.x. PubMed DOI

Fischer R.A. Wheat physiology: A review of recent developments. Crop Pasture Sci. 2011;62:95–114. doi: 10.1071/CP10344. DOI

Stone P., Nicolas M. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct. Plant Biol. 1994;21:887–900. doi: 10.1071/PP9940887. DOI

Howarth C.J. Genetic improvements of tolerance to high temperature. In: Ashraf M., Harris P., editors. Abiotic Stresses. CRC Press; Boca Raton, FL, USA: 2005. pp. 299–322.

Schoeffl F., Prandl R., Reindl A. Molecular responses to heat stress. In: Shinozaki K., Yamaguchi-Shinozaki K., editors. Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. R.G.Landes Co.; Austin, TX, USA: 1999. pp. 81–98.

Way D.A., Oren R., Kroner Y. The space-time continuum: The effects of elevated CO2 and temperature and the importance of scaling. Plant Cell Environ. 2015;38:991–1007. doi: 10.1111/pce.12527. PubMed DOI

Slot M., Winter K. In Situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species. Plant Cell Environ. 2017;40:3055–3068. doi: 10.1111/pce.13071. PubMed DOI

Fauset S., Oliveira L., Buckeridge M.S., Foyer C.H., Galbraith D., Tiwari R., Gloor M. Contrasting responses of stomatal conductance and photosynthetic capacity to warming and elevated CO2 in the tropical tree species Alchornea glandulosa under heatwave conditions. Environ. Exp. Bot. 2019;158:28–39. doi: 10.1016/j.envexpbot.2018.10.030. DOI

Drake J.E., Tjoelker M.G., Vårhammar A., Medlyn B.E., Reich P.B., Leigh A., Barton C.V.M. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Chang. Biol. 2018;24:2390–2402. doi: 10.1111/gcb.14037. PubMed DOI

Urban J., Ingwers M.W., McGuire M.A., Teskey R.O. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. J. Exp. Bot. 2017;68:1757–1767. doi: 10.1093/jxb/erx052. PubMed DOI PMC

Slot M., Winter K. Photosynthetic acclimation to warming in tropical forest tree seedlings. J. Exp. Bot. 2017;68:2275–2284. doi: 10.1093/jxb/erx071. PubMed DOI PMC

Crafts-Brander S.J., Salvucci M.E. Sensitivity to photosynthesis in the C4 plant, maize to heat stress. Plant Cell. 2002;12:54–68. PubMed PMC

Morales D., Rodríguez P., Dell’amico J., Nicolás E., Torrecillas A., Sánchez-Blanco M.J. High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol. Plant. 2003;47:203–208. doi: 10.1023/B:BIOP.0000022252.70836.fc. DOI

Wise R.R., Olson A.J., Schrader S.M., Sharkey T.D. Electron transport is the functional limitaion of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ. 2004;27:717–724. doi: 10.1111/j.1365-3040.2004.01171.x. DOI

Tóth S.Z., Schansker G., Kissimon J., Kovács L., Garab G., Strasser R.J. Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedling (Hordeum vulgare) J. Plant Physiol. 2005;162:181–194. doi: 10.1016/j.jplph.2004.06.010. PubMed DOI

Lazár D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol. 2006;33:9–30. doi: 10.1071/FP05095. PubMed DOI

Chen L.S., Li P., Cheng L. Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the sun-exposed peel of apple. Planta. 2008;228:745–756. doi: 10.1007/s00425-008-0776-3. PubMed DOI

Li P., Cheng L., Gao H., Jiang C., Peng T. Heterogenous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. J. Plant Physiol. 2009;166:1607–1615. doi: 10.1016/j.jplph.2009.04.013. PubMed DOI

Camejo D., Rodríguez P., Morales M.A., Dellamico J.M., Torrecillas A., Alarcón J.J. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 2005;162:281–289. doi: 10.1016/j.jplph.2004.07.014. PubMed DOI

De Ronde J.A.D., Cress W.A., Kruger G.H.J., Strasser R.J., Staden J.V. Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. J. Plant Physiol. 2004;61:1211–1244. doi: 10.1016/j.jplph.2004.01.014. PubMed DOI

Zivcak M., Brestic M., Balatova Z., Drevenakova P., Olsovska K., Kalaji H.M., Allakhverdiev S.I. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynt. Res. 2013;117:529–546. doi: 10.1007/s11120-013-9885-3. PubMed DOI

Farquhar G.D., von Caemmerer S., Berry J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 1980;149:78–90. doi: 10.1007/BF00386231. PubMed DOI

Ethier G.J., Livingston N.J. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar–von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ. 2004;27:137–153. doi: 10.1111/j.1365-3040.2004.01140.x. DOI

Klughammer C., Schreiber U. Saturation pulse method for assessment of energy conversion in PSI. Planta. 1994;192:261–268. doi: 10.1007/BF01089043. DOI

Baker N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Ann. Rev. Plant Biol. 2008;59:89–113. doi: 10.1146/annurev.arplant.59.032607.092759. PubMed DOI

Brestic M., Zivcak M., Hauptvogel P., Misheva S., Kocheva K., Yang X., Li X., Allakhverdiev S.I. Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions. Photosynt. Res. 2018;136:245–255. doi: 10.1007/s11120-018-0486-z. PubMed DOI

Allakhverdiev S.I., Kreslavski V.D., Klimov V.V., Los D.A., Carpentier R., Mohanty P. Heat stress: An overview of molecular responses in photosynthesis. Photosynt. Res. 2008;98:541. doi: 10.1007/s11120-008-9331-0. PubMed DOI

Sharkey T.D. Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ. 2005;28:269–277. doi: 10.1111/j.1365-3040.2005.01324.x. DOI

Salvucci M.E., Crafts-Brandner S.J. Inhibition of photosynthesis by heat stress: The activation state of Rubisco as a limiting factor in photosynthesis. Physiol. Plantarum. 2004;120:179–186. doi: 10.1111/j.0031-9317.2004.0173.x. PubMed DOI

Haldimann P., Feller U. Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant Cell Environ. 2005;28:302–317. doi: 10.1111/j.1365-3040.2005.01289.x. DOI

Zhang R., Sharkey T.D. Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth. Res. 2009;100:29–43. doi: 10.1007/s11120-009-9420-8. PubMed DOI

Brestic M., Zivcak M., Kunderlikova K., Allakhverdiev S.I. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynth. Res. 2016;130:251–266. doi: 10.1007/s11120-016-0249-7. PubMed DOI

Zivcak M., Brestic M., Kunderlikova K., Sytar O., Allakhverdiev S.I. Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth. Res. 2015;126:449–463. doi: 10.1007/s11120-015-0121-1. PubMed DOI

Brestic M., Zivcak M., Kunderlikova K., Sytar O., Shao H., Kalaji H.M., Allakhverdiev S.I. Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Photosynth. Res. 2015;125:151–166. doi: 10.1007/s11120-015-0093-1. PubMed DOI

Huang W., Yang Y.J., Zhang S.B. Specific roles of cyclic electron flow around photosystem I in photosynthetic regulation in immature and mature leaves. J. Plant Phys. 2017;209:76–83. doi: 10.1016/j.jplph.2016.11.013. PubMed DOI

Takagi D., Miyake C. Proton gradient regulation 5 supports linear electron flow to oxidize photosystem I. Physiologia Plantarum. 2018;164:337–348. doi: 10.1111/ppl.12723. PubMed DOI

Takagi D., Takumi S., Miyake C. Growth light environment changes the sensitivity of photosystem I photoinhibition depending on common wheat cultivars. Front. Plant Sci. 2019;10:686. doi: 10.3389/fpls.2019.00686. PubMed DOI PMC

Wada S., Takagi D., Miyake C., Makino A., Suzuki Y. Responses of the photosynthetic electron transport reactions stimulate the oxidation of the reaction center chlorophyll of photosystem I, p700, under drought and high temperatures in rice. Int. J. Mol. Sci. 2019;20:2068. doi: 10.3390/ijms20092068. PubMed DOI PMC

Schmitt F.J., Renger G., Friedrich T., Kreslavski V.D., Zharmukhamedov S.K., Los D.A., Kuznetsov V.V., Allakhverdiev S.I. Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signalling in phototrophic organisms. Biochim. Biophys. Acta. 2014;1837:835–848. doi: 10.1016/j.bbabio.2014.02.005. PubMed DOI

Takagi D., Amako K., Hashiguchi M., Fukaki H., Ishizaki K., Goh T., Sawa S. Chloroplastic ATP synthase builds up a proton motive force preventing production of reactive oxygen species in photosystem I. Plant J. 2017;91:306–324. doi: 10.1111/tpj.13566. PubMed DOI

Huang W., Tikkanen M., Zhang S.B. Photoinhibition of photosystem I in Nephrolepis falciformis depends on reactive oxygen species generated in the chloroplast stroma. Photosynth. Res. 2018;137:129–140. doi: 10.1007/s11120-018-0484-1. PubMed DOI

Tikkanen M., Mekala N.R., Aro E.M. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Biochim. Biophys. Acta. 2014;1837:210–215. doi: 10.1016/j.bbabio.2013.10.001. PubMed DOI

Kono M., Noguchi K., Terashima I. Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Plant Cell Physiol. 2014;55:990–1004. doi: 10.1093/pcp/pcu033. PubMed DOI

Kudoh H., Sonoike K. Irreversible damage to photosystem I by chilling in the light: Cause of the degradation of chlorophyll after returning to normal growth temperature. Planta. 2002;215:541–548. doi: 10.1007/s00425-002-0790-9. PubMed DOI

Zivcak M., Brestic M., Kunderlikova K., Olsovska K., Allakhverdiev S.I. Effect of photosystem I inactivation on chlorophyll a fluorescence induction in wheat leaves: Does activity of photosystem I play any role in OJIP rise? J. Photochem. Photobiol. 2015;152:318–324. doi: 10.1016/j.jphotobiol.2015.08.024. PubMed DOI

Sonoike K. Photoinhibition of photosystem I. Physiol. Plant. 2011;142:56–64. doi: 10.1111/j.1399-3054.2010.01437.x. PubMed DOI

Fukayama H., Ueguchi C., Nishikawa K., Katoh N., Ishikawa C., Masumoto C., Hatanaka T., Misoo S. Overexpression of Rubisco activase decreases the photosynthetic CO2 assimilation rate by reducing Rubisco content in rice leaves. Plant Cell Physiol. 2012;53:976–986. doi: 10.1093/pcp/pcs042. PubMed DOI

Wada S., Suzuki Y., Takagi D., Miyake C., Makino A. Effects of genetic manipulation of the activity of photorespiration on the redox state of photosystem I and its robustness against excess light stress under CO2-limited conditions in rice. Photosynth. Res. 2018;137:431–441. doi: 10.1007/s11120-018-0515-y. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace