High photosynthetic thermal tolerance in the Mediterranean halophyte Limoniastrum monopetalum
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39649361
PubMed Central
PMC11622549
DOI
10.32615/ps.2024.026
PII: PS62263
Knihovny.cz E-zdroje
- Klíčová slova
- Mediterranean climate, chlorophyll fluorescence, climate change, gas exchange, heat wave, stressor,
- Publikační typ
- časopisecké články MeSH
The general increase in temperature, together with sudden episodes of extreme temperatures, are increasingly impacting plant species in the present climate change scenario. Limoniastrum monopetalum is a halophyte from the Mediterranean Basin, exposed to broad daily and seasonal changes in temperature and extreme high temperatures. We studied the photosynthetic responses (chlorophyll fluorescence dynamics and gas exchange) of L. monopetalum leaves exposed to temperatures from -7.5°C to +57.5°C under darkness in controlled laboratory conditions. L. monopetalum presented its optimum temperature for photosynthesis around +30°C. The photosynthetic apparatus of L. monopetalum exhibited permanent damages at > +40.0°C. L. monopetalum tolerated, without permanent damages, temperatures as low as -7.5°C in darkness. L. monopetalum appears as a plant species very well adapted to the seasonality of the Mediterranean climate, which may work as a pre-adaptation to stand more extreme temperatures in the actual context of accelerating climate change.
Zobrazit více v PubMed
Abd El-Maboud M.M., Abd Elbar O.H.: Adaptive responses of Limoniastrum monopetalum (L.) Boiss. growing naturally at different habitats. – Plant Physiol. Rep. 25: 325-334, 2020. 10.1007/s40502-020-00519-3 DOI
Akoumianaki Ioannidou A., Spentza R.P., Fasseas C.: Limoniastrum monopetalum (L.) Boiss, a candidate plant for use in urban and suburban areas with adverse conditions. An anatomical and histochemical study. – Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Hortic. 72: 438-440, 2015. 10.15835/buasvmcn-hort:11347 DOI
Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview. – Photosynthetica 51: 163-190, 2013. 10.1007/s11099-013-0021-6 DOI
Banks J.M.: Continuous excitation chlorophyll fluorescence parameters: a review for practitioners. – Tree Physiol. 37: 1128-1136, 2017. 10.1093/treephys/tpx059 PubMed DOI
Bastos A., Ciais P., Friedlingstein P. et al.: Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. – Sci. Adv. 6: eaba2724, 2020. 10.1126/sciadv.aba2724 PubMed DOI PMC
Bergo E., Segalla A., Giacometti G.M. et al.: Role of visible light in the recovery of photosystem II structure and function from ultraviolet-B stress in higher plants. – J. Exp. Bot. 54: 1665-1673, 2003. PubMed
Boughalleb F., Maaloul S., Abdellaoui R.: Effect of seasonal environmental changes on leaf anatomical responses of Limoniastrum guyonianum in Sabkha biotope. – Environ. Sci. Proc. 16: 12, 2022.
Boulos L.: Flora and vegetation of the deserts of Egypt. – Flora Mediterr. 18: 341-359, 2008.
Carrión-Tacuri J., Rubio-Casal A.E., de Cires A. et al.: Effect of low and high temperatures on the photosynthetic performance of Lantana camara L. leaves in darkness. – Russ. J. Plant Physiol. 60: 322-329, 2013. 10.1134/S1021443713030047 DOI
Cavanagh A.P., South P.F., Bernacchi C.J., Ort D.R.: Alternative pathway to photorespiration protects growth and productivity at elevated temperatures in a model crop. – Plant Biotechnol. J. 20: 711-721, 2022. 10.1111/pbi.13750 PubMed DOI PMC
Chaudhry S., Sidhu G.P.S.: Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. – Plant Cell Rep. 41: 1-31, 2022. 10.1007/s00299-021-02759-5 PubMed DOI
Choudhury F.K., Rivero R.M., Blumwald E., Mittler R.: Reactive oxygen species, abiotic stress and stress combination. – Plant J. 90: 856-867, 2017. 10.1111/tpj.13299 PubMed DOI
Chovancek E., Zivcak M., Botyanszka L. et al.: Transient heat waves may affect the photosynthetic capacity of susceptible wheat genotypes due to insufficient photosystem I photoprotection. – Plants-Basel 8: 282, 2019. 10.3390/plants8080282 PubMed DOI PMC
Davidson N.J., Battaglia M., Close D.C.: Photosynthetic responses to overnight frost in Eucalyptus nitens and E. globulus. – Trees-Struct. Funct. 18: 245-252, 2004. 10.1007/s00468-003-0298-3 DOI
De Boeck H.J., Bassin S., Verlinden M. et al.: Simulated heat waves affected alpine grassland only in combination with drought. – New Phytol. 209: 531-541, 2016. 10.1111/nph.13601 PubMed DOI
Duarte B., Carreiras J., Fonseca B. et al.: Improving Salicornia ramosissima photochemical and biochemical resilience to extreme heatwaves through rhizosphere engineering with Plant Growth-Promoting Bacteria. – Plant Physiol. Biochem. 199: 107725, 2023. 10.1016/j.plaphy.2023.107725 PubMed DOI
Duarte B., Marques J.C., Caçador I.: Ecophysiological response of native and invasive Spartina species to extreme temperature events in Mediterranean marshes. – Biol. Invasions 18: 2189-2205, 2016. 10.1007/s10530-015-0958-4 DOI
Duarte B., Santos D., Marques J.C., Caçador I.: Impact of heat and cold events on the energetic metabolism of the C3 halophyte Halimione portulacoides. – Estuar. Coast. Shelf Sci. 167: 166-177, 2015. 10.1016/j.ecss.2015.10.003 DOI
Farquhar G.D., von Caemmerer S., Berry J.A.: Models of photosynthesis. – Plant Physiol. 125: 42-45, 2001. https://www.jstor.org/stable/4279605 PubMed PMC
Fehér B., Voets I.K., Nagy G.: The impact of physiologically relevant temperatures on physical properties of thylakoid membranes: a molecular dynamics study. – Photosynthetica 61: 441-450, 2023. 10.32615/ps.2023.035 DOI
Gjindali A., Johnson G.N.: Photosynthetic acclimation to changing environments. – Biochem. Soc. T. 51: 473-486, 2023. 10.1042/BST20211245 PubMed DOI PMC
Gupta R., Sharma R.D., Rao Y.R. et al.: Acclimation potential of Noni (Morinda citrifolia L.) plant to temperature stress is mediated through photosynthetic electron transport rate. – Plant Signal. Behav. 16: 1865687, 2021. 10.1080/15592324.2020.1865687 PubMed DOI PMC
Hao R., Yu D., Liu Y. et al.: Impacts of changes in climate and landscape pattern on ecosystem services. – Sci. Total Environ. 579: 718-728, 2017. 10.1016/j.scitotenv.2016.11.036 PubMed DOI
Hwang Y.-S., Schlüter S., Um J.-S.: Spatial cross-correlation of GOSAT CO2 concentration with repeated heat wave-induced photosynthetic inhibition in Europe from 2009 to 2017. – Remote Sens. 14: 4536, 2022. 10.3390/rs14184536 DOI
IPCC 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 3056. Cambridge University Press, Cambridge-New York: 2022. 10.1017/9781009325844 DOI
Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. – Acta Physiol. Plant. 38: 102, 2016. 10.1007/s11738-016-2113-y DOI
Kouřil R., Lazár D., Ilík P. et al.: High-temperature induced chlorophyll fluorescence rise in plants at 40–50°C: experimental and theoretical approach. – Photosynth. Res. 81: 49-66, 2004. 10.1023/B:PRES.0000028391.70533.eb PubMed DOI
Landi M., Guidi L.: Effects of abiotic stress on photosystem II proteins. – Photosynthetica 61: 148-156, 2023. 10.32615/ps.2022.043 DOI
Legris M., Nieto C., Sellaro R. et al.: Perception and signalling of light and temperature cues in plants. – Plant J. 90: 683-697, 2017. 10.1111/tpj.13467 PubMed DOI
Lichtenthaler H.K.: Vegetation stress: an introduction to the stress concept in plants. – J. Plant Physiol. 148: 4-14, 1996. 10.1016/S0176-1617(96)80287-2 DOI
Mathur S., Agrawal D., Jajoo A.: Photosynthesis: Response to high temperature stress. – J. Photoch. Photobio. B 137: 116-126, 2014. 10.1016/j.jphotobiol.2014.01.010 PubMed DOI
Maxwell K., Johnson G.N.: Chlorophyll fluorescence – a practical guide. – J. Exp. Bot. 51: 659-668, 2000. 10.1093/jexbot/51.345.659 PubMed DOI
Meyer S., de Kouchkovsky Y.: Electron transport, Photosystem-2 reaction centers and chlorophyll-protein complexes of thylakoids of drought resistant and sensitive Lupin plants. – Photosynth. Res. 37: 49-60, 1993. 10.1007/BF02185438 PubMed DOI
Noto L.V., Cipolla G., Pumo D., Francipane A.: Climate change in the Mediterranean Basin (Part II): A review of challenges and uncertainties in climate change modeling and impact analyses. – Water Resour. Manag. 37: 2307-2323, 2023. 10.1007/s11269-023-03444-w DOI
Penfield S., MacGregor D.: Temperature sensing in plants. – In: Franklin K.A., Wigge P.A. (ed.): Temperature and Plant Development. Pp. 1-18. John Wiley & Sons, Oxford: 2014. 10.1002/9781118308240.ch1 DOI
Popova A.V., Dobrev K., Velitchkova M., Ivanov A.G.: Differential temperature effects on dissipation of excess light energy and energy partitioning in lut2 mutant of Arabidopsis thaliana under photoinhibitory conditions. – Photosynth. Res. 139: 367-385, 2019. 10.1007/s11120-018-0511-2 PubMed DOI
Popova A.V., Stefanov M., Ivanov A.G., Velitchkova M.: The role of alternative electron pathways for effectiveness of photosynthetic performance of Arabidopsis thaliana, wt and lut2, under low temperature and high light intensity. – Plants-Basel 11: 2318, 2022. 10.3390/plants11172318 PubMed DOI PMC
Rubio-Casal A.E., Leira-Doce P., Figueroa M.E., Castillo J.M.: Contrasted tolerance to low and high temperatures of three tree taxa co-occurring on coastal dune forests under Mediterranean climate. – J. Arid Environ. 74: 429-439, 2010. 10.1016/j.jaridenv.2009.10.004 DOI
Seki M., Kamei A., Yamaguchi-Shinozaki K., Shinozaki K.: Molecular responses to drought, salinity and frost: common and different paths for plant protection. – Curr. Opin. Biotech. 14: 194-199, 2003. PubMed
Sewelam N., Kazan K., Schenk P.M.: Global plant stress signaling: reactive oxygen species at the cross-road. – Front. Plant Sci. 7: 187, 2016. 10.3389/fpls.2016.00187 PubMed DOI PMC
Szymańska R., Ślesak I., Orzechowska A., Kruk J.: Physiological and biochemical responses to high light and temperature stress in plants. – Environ. Exp. Bot. 139: 165-177, 2017. 10.1016/j.envexpbot.2017.05.002 DOI
Valdés B., Talavera S., Fernández-Galiano E.: Flora Vascular de Andalucía Occidental. [Vascular Flora of Western Andalusia.] Pp. 485. Ketres Editora S.A, Barcelona; 1987. [In Spanish]
Vetoshkina D., Balashov N., Ivanov B. et al.: Light harvesting regulation: A versatile network of key components operating under various stress conditions in higher plants. – Plant Physiol. Biochem. 194: 576-588, 2023. 10.1016/j.plaphy.2022.12.002 PubMed DOI
Vicente O., Boscaiu M.: Will halophytes in Mediterranean salt marshes be able to adapt to climate change? – Agrolife Sci. J. 9: 369-376, 2020. http://hdl.handle.net/10251/166336
Vladimirov V., Dane F., Tan K.: New floristic records in the Balkans: 26. – Phytol. Balc. 21: 53-91, 2015. http://www.bio.bas.bg/~phytolbalcan/PDF/21_1/PhB_21_1_08_Vladimirov_&_al_NFRs_26.pdf
Voss I., Sunil B., Scheibe R., Raghavendra A.S.: Emerging concept for the role of photorespiration as an important part of abiotic stress response. – Plant Biol. 15: 713-722, 2013. 10.1111/j.1438-8677.2012.00710.x PubMed DOI
Walker D.J., Lutts S.: The tolerance of Atriplex halimus L. to environmental stresses. – Emir. J. Food Agric. 26: 1081-1090, 2014. 10.9755/ejfa.v26i12.19116 DOI
Wigge P.A.: Ambient temperature signalling in plants. – Curr. Opin. Plant Biol. 16: 661-666, 2013. 10.1016/j.pbi.2013.08.004 PubMed DOI
Xu C., He C.G., Wang Y.J. et al.: Effect of drought and heat stresses on photosynthesis, pigments, and xanthophyll cycle in alfalfa (Medicago sativa L.). – Photosynthetica 58: 1226-1236, 2020. 10.32615/ps.2020.073 DOI
Yamori W., Hikosaka K., Way D.A.: Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. – Photosynth. Res. 119: 101-117, 2014. 10.1007/s11120-013-9874-6 PubMed DOI
Zhang L.X., Chang Q.S., Hou X.G. et al.: The effect of high-temperature stress on the physiological indexes, chloroplast ultrastructure, and photosystems of two herbaceous peony cultivars. – J. Plant Growth Regul. 42: 1631-1646, 2023. 10.1007/s00344-022-10647-9 DOI
Źróbek-Sokolnik A.: Temperature stress and responses of plants. – In: Ahmad P., Prasad M. (ed.): Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Pp. 113-134. Springer, New York: 2012. 10.1007/978-1-4614-0815-4_5 DOI