Natural killer cells: Innate immune system as a part of adaptive immunotherapy in hematological malignancies

. 2022 Jun 01 ; 97 (6) : 802-817. [epub] 20220326

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35285978

Natural killer (NK) cells are part of a phylogenetically old defense system, which is characterized by its strong cytolytic function against physiologically stressed cells such as tumor cells and virus-infected cells. Their use in the treatment of hematological malignancies may be more advantageous in several ways when compared with the already established T lymphocyte-based immunotherapy. Given the different mechanisms of action, allogeneic NK cell products can be produced in a non-personal based manner without the risk of the formidable graft-versus-host disease. Advanced manufacturing processes are capable of producing NK cells relatively easily in large and clinically sufficient numbers, useable without subsequent manipulations or after genetic modifications, which can solve the lack of specificity and improve clinical efficacy of NK cell products. This review summarizes the basic characteristics of NK cells and provides a quick overview of their sources. Results of clinical trials in hematological malignancies are presented, and strategies on how to improve the clinical outcome of NK cell therapy are discussed.

Zobrazit více v PubMed

Serge MC, Udo SG. The immune system in cancer prevention, development and therapy. Anti Cancer Agents Med Chem. 2015;16(1):101-107.

Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):1-11. doi:10.1038/s41408-021-00459-7

Mohanty R, Chowdhury CR, Arega S, Sen P, Ganguly P, Ganguly N. CAR T cell therapy: a new era for cancer treatment (review). Oncol Rep. 2019;42(6):2183-2195. doi:10.3892/or.2019.7335

Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097-2100. doi:10.1126/science.1068440

Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105(8):3051-3057. doi:10.1182/blood-2004-07-2974

Romee R, Rosario M, Berrien-Elliott MM, et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016;8(357):357ra123. doi:10.1126/scitranslmed.aaf2341

Ciurea SO, Schafer JR, Bassett R, et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood. 2017;130(16):1857-1868. doi:10.1182/blood-2017-05-785659

Liu E, Marin D, Banerjee P, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545-553. doi:10.1056/NEJMoa1910607

Rosenberg SA, Lotze MT, Muul LM, et al. A progress report on the treatment of 157 patients with advanced cancer using Lymphokine-activated killer cells and Interleukin-2 or high-dose Interleukin-2 alone. N Engl J Med. 1987;316(15):889-897. doi:10.1056/NEJM198704093161501

Kiessling R, Klein E, Wigzell H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 1975;5(2):112-117. doi:10.1002/eji.1830050208

Spits H, Artis D, Colonna M, et al. Innate lymphoid cells - a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145-149. doi:10.1038/nri3365

Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol. 2012;30(1):647-675. doi:10.1146/annurev-immunol-020711-075053

Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on. Cell. 2018;174(5):1054-1066. doi:10.1016/j.cell.2018.07.017

Zhang Y, Wallace DL, Lara CMD, et al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology. 2007;121(2):258-265. doi:10.1111/j.1365-2567.2007.02573.x

Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016;17(9):1025-1036. doi:10.1038/ni.3518

Melsen JE, Lugthart G, Lankester AC, Schilham MW. Human circulating and tissue-resident CD56bright natural killer cell populations. Front Immunol. 2016;7:262. doi:10.3389/fimmu.2016.00262

Grzywacz B, Kataria N, Verneris MR. CD56dimCD16+ NK cells downregulate CD16 following target cell induced activation of matrix metalloproteinases. Leukemia. 2007;21(2):356-359. doi:10.1038/sj.leu.2404499

Elliott JM, Yokoyama WM. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol. 2011;32(8):364-372. doi:10.1016/j.it.2011.06.001

Braud VM, Allan DSJ, O'Callaghan CA, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998;391(6669):795-799. doi:10.1038/35869

Pende D, Parolini S, Pessino A, et al. Identification and molecular characterization of Nkp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med. 1999;190(10):1505-1516. doi:10.1084/jem.190.10.1505

Sivori S, Vitale M, Morelli L, et al. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med. 1997;186(7):1129-1136. doi:10.1084/jem.186.7.1129

Vitale M, Bottino C, Sivori S, et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med. 1998;187(12):2065-2072. doi:10.1084/jem.187.12.2065

Barrow AD, Martin CJ, Colonna M. The natural cytotoxicity receptors in health and disease. Front Immunol. 2019;10:909. doi:10.3389/fimmu.2019.00909

Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999;285(5428):727-729. doi:10.1126/science.285.5428.727

Gasser S, Orsulic S, Brown EJ, Raulet DH. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature. 2005;436(7054):1186-1190. doi:10.1038/nature03884

Pende D, Falco M, Vitale M, et al. Killer Ig-like receptors (KIRs): their role in NK cell modulation and developments leading to their clinical exploitation. Front Immunol. 2019;10:1179. doi:10.3389/fimmu.2019.01179

Iannello A, Ahmad A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev. 2005;24(4):487-499. doi:10.1007/s10555-005-6192-2

Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and Immunoescape. J Clin Oncol. 2010;28(28):4390-4399. doi:10.1200/JCO.2009.27.6360

Bournazos S, Wang TT, Dahan R, Maamary J, Ravetch JV. Signaling by antibodies: recent Progress. Annu Rev Immunol. 2017;35(1):285-311. doi:10.1146/annurev-immunol-051116-052433

Raulet DH, Vance RE. Self-tolerance of natural killer cells. Nat Rev Immunol. 2006;6(7):520-531. doi:10.1038/nri1863

Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19(3):200-218. doi:10.1038/s41573-019-0052-1

Gwalani LA, Orange JS. Single degranulations in NK cells can mediate target cell killing. J Immunol. 2018;200(9):3231-3243. doi:10.4049/jimmunol.1701500

Bhat R, Watzl C. Serial killing of tumor cells by human natural killer cells - enhancement by therapeutic antibodies. PLoS One. 2007;2(3):e326. doi:10.1371/journal.pone.0000326

Prager I, Liesche C, van Ooijen H, et al. NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. J Exp Med. 2019;216(9):2113-2127. doi:10.1084/jem.20181454

Yuan X, Gajan A, Chu Q, Xiong H, Wu K, Wu GS. Developing TRAIL/TRAIL death receptor-based cancer therapies. Cancer Metastasis Rev. 2018;37(4):733-748. doi:10.1007/s10555-018-9728-y

Motais B, Charvátová S, Hrdinka M, et al. A bird's-eye view of cell sources for cell-based therapies in blood cancers. Cancer. 2020;12(5):1333. doi:10.3390/cancers12051333

Fauriat C, Long EO, Ljunggren HG, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115(11):2167-2176. doi:10.1182/blood-2009-08-238469

Bryceson YT, March ME, Ljunggren HG, Long EO. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood. 2006;107(1):159-166. doi:10.1182/blood-2005-04-1351

Trinchieri G, Matsumoto-Kobayashi M, Clark SC, Seehra J, London L, Perussia B. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med. 1984;160(4):1147-1169. doi:10.1084/jem.160.4.1147

Fujisaki H, Kakuda H, Shimasaki N, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009;69(9):4010-4017. doi:10.1158/0008-5472.CAN-08-3712

Fehniger TA, Caligiuri MA. Interleukin 15: biology and relevance to human disease. Blood. 2001;97(1):14-32. doi:10.1182/blood.V97.1.14

Cooper MA, Bush JE, Fehniger TA, et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood. 2002;100(10):3633-3638. doi:10.1182/blood-2001-12-0293

Ranson T, Vosshenrich CAJ, Corcuff E, Richard O, Müller W, Di Santo JP. IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood. 2003;101(12):4887-4893. doi:10.1182/blood-2002-11-3392

Ishikawa E, Tsuboi K, Saijo K, et al. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res. 2004;24(3B):1861-1871.

Krause SW, Gastpar R, Andreesen R, et al. Treatment of colon and Lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clin Cancer Res. 2004;10(11):3699-3707. doi:10.1158/1078-0432.CCR-03-0683

Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res. 2011;17(19):6287-6297. doi:10.1158/1078-0432.CCR-11-1347

Veluchamy JP, Kok N, van der Vliet HJ, Verheul HMW, de Gruijl TD, Spanholtz J. The rise of allogeneic natural killer cells as a platform for cancer immunotherapy: recent innovations and future developments. Front Immunol. 2017;8:631. doi:10.3389/fimmu.2017.00631

McKenna DH Jr, Sumstad D, Bostrom N, et al. Good manufacturing practices production of natural killer cells for immunotherapy: a six-year single-institution experience. Transfusion (Paris). 2007;47(3):520-528. doi:10.1111/j.1537-2995.2006.01145.x

Koehl U, Brehm C, Huenecke S, et al. Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol. Front Oncol. 2013;3:118. doi:10.3389/fonc.2013.00118

Rubnitz JE, Inaba H, Ribeiro RC, et al. NKAML: a pilot study to determine the safety and feasibility of Haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010;28(6):955-959. doi:10.1200/JCO.2009.24.4590

McKenna DH, Kadidlo DM, Cooley S, Miller JS. Clinical production and therapeutic applications of Alloreactive natural killer cells. In: Christiansen FT, Tait BD, eds. Immunogenetics: Methods and Applications in Clinical Practice. Methods in Molecular Biology. Humana Press; 2012:491-507. doi:10.1007/978-1-61779-842-9_28

Bachanova V, Sarhan D, DeFor TE, et al. Haploidentical natural killer cells induce remissions in non-Hodgkin lymphoma patients with low levels of immune-suppressor cells. Cancer Immunol Immunother. 2018;67(3):483-494. doi:10.1007/s00262-017-2100-1

Cooley S, He F, Bachanova V, et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 2019;3(13):1970-1980. doi:10.1182/bloodadvances.2018028332

Denman CJ, Senyukov VV, Somanchi SS, et al. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One. 2012;7(1):e30264. doi:10.1371/journal.pone.0030264

Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev. 2006;2(2):155-162. doi:10.1007/s12015-006-0022-y

Mehta RS, Shpall EJ, Rezvani K. Cord blood as a source of natural killer cells. Front Med. 2016;2:93. doi:10.3389/fmed.2015.00093

Shah N, Martin-Antonio B, Yang H, et al. Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS One. 2013;8(10):e76781. doi:10.1371/journal.pone.0076781

Xing D, Ramsay AG, Gribben JG, et al. Cord blood natural killer cells exhibit impaired lytic immunological synapse formation that is reversed with IL-2 exvivo expansion. J Immunother. 2010;33(7):684-696. doi:10.1097/CJI.0b013e3181e475e9

Tomchuck SL, Leung WH, Dallas MH. Enhanced cytotoxic function of natural killer and CD3+CD56+ cells in cord blood after culture. Biol Blood Marrow Transplant. 2015;21(1):39-49. doi:10.1016/j.bbmt.2014.10.014

Spanholtz J, Preijers F, Tordoir M, et al. Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. PLoS One. 2011;6(6):e20740. doi:10.1371/journal.pone.0020740

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. doi:10.1016/j.cell.2006.07.024

Woll PS, Grzywacz B, Tian X, et al. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood. 2009;113(24):6094-6101. doi:10.1182/blood-2008-06-165225

Hermanson DL, Ni Z, Kaufman DS. Human pluripotent stem cells as a renewable source of natural killer cells. Hematopoietic Differentiation of Human Pluripotent Stem Cells. Springer Netherlands; 2015:69-79. doi:10.1007/978-94-017-7312-6_5

Zhu H, Kaufman DS. An improved method to produce clinical-scale natural killer cells from human pluripotent stem cells. In: Kaneko S, ed. In Vitro Differentiation of T-Cells: Methods and Protocols. Methods in Molecular Biology. Springer; 2019:107-119. doi:10.1007/978-1-4939-9728-2_12

Hermanson DL, Bendzick L, Pribyl L, et al. Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells. 2016;34(1):93-101. doi:10.1002/stem.2230

Cichocki F, Bjordahl R, Gaidarova S, et al. iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti-PD-1 therapy. Sci Transl Med. 2020;12(568):eaaz5618. doi:10.1126/scitranslmed.aaz5618

Wilber A, Linehan JL, Tian X, et al. Efficient and stable transgene expression in human embryonic stem cells using transposon-mediated gene transfer. Stem Cells. 2007;25(11):2919-2927. doi:10.1634/stemcells.2007-0026

Xie F, Ye L, Chang JC, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24(9):1526-1533. doi:10.1101/gr.173427.114

Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 2018;23(2):181-192.e5. doi:10.1016/j.stem.2018.06.002

Shankar K, Capitini CM, Saha K. Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies. Stem Cell Res Ther. 2020;11:234. doi:10.1186/s13287-020-01741-4

Knorr DA, Ni Z, Hermanson D, et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med. 2013;2(4):274-283. doi:10.5966/sctm.2012-0084

Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994;8(4):652-658.

Suck G, Odendahl M, Nowakowska P, et al. NK-92: an ‘off-the-shelf therapeutic’ for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother. 2016;65(4):485-492. doi:10.1007/s00262-015-1761-x

Zhang C, Oberoi P, Oelsner S, et al. Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity. Front Immunol. 2017;8:533. doi:10.3389/fimmu.2017.00533

Oelsner S, Friede ME, Zhang C, et al. Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy. 2017;19(2):235-249. doi:10.1016/j.jcyt.2016.10.009

Mitwasi N, Feldmann A, Arndt C, et al. “UniCAR”-modified off-the-shelf NK-92 cells for targeting of GD2-expressing tumour cells. Sci Rep. 2020;10(1):2141. doi:10.1038/s41598-020-59082-4

Bachanova V, Cooley S, Defor TE, et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014;123(25):3855-3863. doi:10.1182/blood-2013-10-532531

Nguyen R, Wu H, Pounds S, et al. A phase II clinical trial of adoptive transfer of haploidentical natural killer cells for consolidation therapy of pediatric acute myeloid leukemia. J Immunother Cancer. 2019;7(1):81. doi:10.1186/s40425-019-0564-6

Ciurea SO, Kongtim P, Soebbing D, et al. Decrease post-transplant relapse using donor-derived expanded NK-cells. Leukemia. 2021;36:1-10. doi:10.1038/s41375-021-01349-4

Ciurea SO, Schafer J, Kongtim P, et al. Haploidentical Mbil-21 ex vivo expanded NK cells (FC21-NK) for patients with multiple relapsed and refractory acute myeloid leukemia. Blood. 2020;136(Supplement 1):11-12. doi:10.1182/blood-2020-134858

Dolstra H, Roeven MWH, Spanholtz J, et al. Successful transfer of umbilical cord blood CD34+ hematopoietic stem and progenitor-derived NK cells in older acute myeloid leukemia patients. Clin Cancer Res. 2017;23(15):4107-4118. doi:10.1158/1078-0432.CCR-16-2981

Warlick ED, Weisdorf DJ, Vallera DA, et al. GTB-3550 TriKE™ for the treatment of high-risk myelodysplastic syndromes (MDS) and refractory/relapsed acute myeloid leukemia (AML) safely drives natural killer (NK) cell proliferation at initial dose cohorts. Blood. 2020;136(Supplement 1):7-8. doi:10.1182/blood-2020-136398

Bachanova V, Maakaron J, McKenna DH, et al. Results of a phase 1 trial of Gda-201, nicotinamide-expanded allogeneic natural killer (NK) cells in patients with refractory non-Hodgkin lymphoma (NHL) and multiple myeloma. Blood. 2020;136(Supplement 1):6. doi:10.1182/blood-2020-142419

Yoon DH, Koh Y, Park H, Hwang Y, Kim WS. A phase 1 study of the combination of MG4101, ex vivo-expanded allogeneic NK cells and rituximab for relapsed or refractory non-Hodgkin lymphoma. Blood. 2020;136(Supplement 1):14-15. doi:10.1182/blood-2020-133518

Shi J, Tricot G, Szmania S, et al. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched NK cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol. 2008;143(5):641-653. doi:10.1111/j.1365-2141.2008.07340.x

Szmania S, Lapteva N, Garg T, et al. Ex vivo-expanded natural killer cells demonstrate robust proliferation in vivo in high-risk relapsed multiple myeloma patients. J Immunother. 2015;38(1):24-36. doi:10.1097/CJI.0000000000000059

Shah N, Li L, McCarty J, et al. Phase I study of cord blood-derived natural killer cells combined with autologous stem cell transplantation in multiple myeloma. Br J Haematol. 2017;177(3):457-466. doi:10.1111/bjh.14570

Rölle A, Pollmann J, Cerwenka A. Memory of infections: an emerging role for natural killer cells. PLoS Pathog. 2013;9(9):e1003548. doi:10.1371/journal.ppat.1003548

Keppel MP, Yang L, Cooper MA. Murine NK cell intrinsic cytokine-induced memory-like responses are maintained following homeostatic proliferation. J Immunol. 2013;190(9):4754-4762. doi:10.4049/jimmunol.1201742

Cooper MA, Elliott JM, Keyel PA, Yang L, Carrero JA, Yokoyama WM. Cytokine-induced memory-like natural killer cells. Proc Natl Acad Sci. 2009;106(6):1915-1919. doi:10.1073/pnas.0813192106

Leong JW, Chase JM, Romee R, et al. Preactivation with IL-12, IL-15, and IL-18 induces CD25 and a functional high-affinity IL-2 receptor on human cytokine-induced memory-like natural killer cells. Biol Blood Marrow Transplant. 2014;20(4):463-473. doi:10.1016/j.bbmt.2014.01.006

Shapiro R, Nikiforow S, Rambaldi B, et al. Cytokine-induced memory-like NK cells exhibit massive expansion and Long-term persistence after infusion post-Haploidentical stem cell transplantation: a report of the first three cases in a phase I trial, abstract #66. Presented at the 2020 ASH Annual Meeting and Exposition, December 5, 2020; online access. Published online December 5, 2020.

Liu E, Tong Y, Dotti G, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2018;32(2):520-531. doi:10.1038/leu.2017.226

Demel I, Bago JR, Hajek R, Jelinek T. Focus on monoclonal antibodies targeting B-cell maturation antigen (BCMA) in multiple myeloma: update 2021. Br J Haematol. 2021;193(4):705-722. doi:10.1111/bjh.17235

Kakiuchi-Kiyota S, Ross T, Wallweber HA, et al. A BCMA/CD16A bispecific innate cell engager for the treatment of multiple myeloma. Leukemia. 2022;36. doi:10.1038/s41375-021-01478-w

Plesner T, Harrison SJ, Quach H, et al. A phase I study of RO7297089, a B-cell maturation antigen (BCMA)-CD16a bispecific antibody in patients with relapsed/refractory multiple myeloma (RRMM), abstract #2755. Presented at the 2021 ASH Annual Meeting and Exposition, December 12, 2021; online access. Published online December 12, 2021.

Vasu S, Bhatnagar B, Blachly JS, Szuminski N, O'Donnell L, Lee DA. A phase I clinical trial testing the safety of IL-21-expanded, off-the-shelf, third-party natural killer cells for relapsed/refractory acute myeloid leukemia and myelodysplastic syndrome. Blood. 2020;136(Supplement 1):44. doi:10.1182/blood-2020-139170

Rezner B, Solchaga L, Reyes L, et al. cGMP mass production of FT538, a first-of-kind, off-the-shelf, multiplexed engineered natural killer cell cancer immunotherapy derived from a clonal master induced pluripotent stem cell line, abstract #3279. Presented at the 2020 ASH Annual Meeting and Exposition, December 7, 2020; online access. Published online December 7, 2020.

Cichocki F, Bjordahl R, Woan K, et al. Triple gene-modified iPSC-derived NK cells combined with Daratumumab for targeted immunotherapy against AML, abstract #1947. Presented at the 2020 ASH Annual Meeting and Exposition, December 6, 2020; online access. Published online December 6, 2020.

Motais B, Charvátová S, Walek Z, et al. Selection, expansion, and unique pretreatment of allogeneic human natural killer cells with anti-CD38 monoclonal antibody for efficient multiple myeloma treatment. Cell. 2021;10(5):967. doi:10.3390/cells10050967

Dong H, Xie G, Liang Y, et al. Engineered memory-like NK cars targeting a Neoepitope derived from intracellular NPM1c exhibit potent activity and specificity against acute myeloid leukemia, abstract #611. Presented at the 2020 ASH Annual Meeting and Exposition, December 7, 2020; online access. Published online December 7, 2020.

Foster AE, Mahendravada A, Shinners NP, et al. Regulated expansion and survival of chimeric antigen receptor-modified T cells using small molecule-dependent inducible MyD88/CD40. Mol Ther. 2017;25(9):2176-2188. doi:10.1016/j.ymthe.2017.06.014

Wang X, Jasinski DL, Medina JL, Spencer DM, Foster AE, Bayle JH. Inducible MyD88/CD40 synergizes with IL-15 to enhance antitumor efficacy of CAR-NK cells. Blood Adv. 2020;4(9):1950-1964. doi:10.1182/bloodadvances.2020001510

Carlsten M, Childs RW. Genetic manipulation of NK cells for cancer immunotherapy: techniques and clinical implications. Front Immunol. 2015;6:266. doi:10.3389/fimmu.2015.00266

Gurney M, O'Reilly E, Corcoran S, et al. Tc buster transposon engineered CLL-1 CAR-NK cells efficiently target acute myeloid leukemia, abstract #1725. Presented at the 2021 ASH Annual Meeting and Exposition, December 11, 2021; online access. Published online December 11, 2021.

Choi E, Chang JW, Krueger J, et al. Engineering CD70-directed CAR-NK cells for the treatment of hematological and solid malignancies, abstract #1691. Presented at the 2021 ASH Annual Meeting and Exposition, December 11, 2021; online access. Published online December 11, 2021.

Ullrich E, Bexte T, Botezatu L, et al. Non-viral sleeping beauty transposon engineered CD19-CAR-NK cells show a safe genomic integration profile and high Antileukemic efficiency, abstract #2797. Presented at the 2021 ASH Annual Meeting and Exposition, December 12, 2021; online access. Published online December 12, 2021.

Garrison BS, Deng H, Yucel G, et al. FLT3 OR CD33 NOT EMCN logic gated CAR-NK cell therapy (SENTI-202) for precise targeting of AML, abstract #2799. Presented at the 2021 ASH Annual Meeting and Exposition, December 12, 2021; online access. Published online December 12, 2021.

Borges L, Wallet MA, Bullaughey CL, et al. Development of multi-engineered iPSC-derived CAR-NK cells for the treatment of B-cell malignancies, abstract #1729. Presented at the 2021 ASH Annual Meeting and Exposition, December 11, 2021; online access. Published online December 11, 2021.

Mbofung RM, Williams AM, Hayama K, et al. Off-the-shelf, iPSC-derived CAR-NK cells multiplexed-engineered for the avoidance of allogeneic host immune cell rejection, abstract #2795. Presented at the 2021 ASH Annual Meeting and Exposition, December 12, 2021; online access. Published online December 12, 2021.

Swanson MD, Winter HC, Goldstein IJ, Markovitz DM. A lectin isolated from bananas is a potent inhibitor of HIV replication*. J Biol Chem. 2010;285(12):8646-8655. doi:10.1074/jbc.M109.034926

Covés-Datson EM, King SR, Legendre M, et al. A molecularly engineered antiviral banana lectin inhibits fusion and is efficacious against influenza virus infection in vivo. Proc Natl Acad Sci. 2020;117(4):2122-2132. doi:10.1073/pnas.1915152117

Christodoulou I, Rahnama R, Ravich WJ, et al. CAR-NK cells targeting Sars-Cov-2 Glycosites as COVID-19 treatment, abstract #2803. Presented at the 2021 ASH Annual Meeting and Exposition, December 12, 2021; online access. Published online December 12, 2021.

Borges CM, Wasko K, Nasser JM, et al. Preclinical development of Edit-201, a multigene edited healthy donor NK cell with enhanced anti-tumor function and superior serial killing activity in an immunosuppressive environment, abstract #1463. Presented at the 2020 ASH Annual Meeting and Exposition, December 5, 2020; online access. Published online December 5, 2020.

de Andrade LF, Tay RE, Pan D, et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science. 2018;359(6383):1537-1542. doi:10.1126/science.aao0505

Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1-11. doi:10.1038/s12276-018-0191-1

André P, Denis C, Soulas C, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell. 2018;175(7):1731-1743.e13. doi:10.1016/j.cell.2018.10.014

Dixon K, Hullsiek D, Snyder K, et al. Engineered iPSC-derived NK cells expressing recombinant CD64 for enhanced ADCC, abstract #67. Presented at the 2020 ASH Annual Meeting and Exposition, December 5, 2020; online access. Published online December 5, 2020.

Yamamoto K, Blum R, Kaufman DS. ADAM17-deficient pluripotent stem cell-derived natural killer cells possess improved antibody-dependent cellular cytotoxicity and antitumor activity, abstract #2649. Presented at the 2020 ASH Annual Meeting and Exposition, December 7, 2020; online access. Published online December 7, 2020.

Kuo P, Maiti M, Quach P, et al. Abstract 1603: NKTR-255 engages the IL-15 pathway driving CD8 T cell survival and CD8 memory T cell proliferation. Cancer Res. 2017;77(13 Supplement):1603. doi:10.1158/1538-7445.AM2017-1603

Chu Y, Jiang S, Jiang J, et al. Optimizing ex-vivo expanded NK cell- mediated antibody-dependent cellular cytotoxicity (ADCC) combined with NKTR-255 in chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and Burkitt lymphoma (BL), abstract #825. Presented at the 2020 ASH Annual Meeting and Exposition, December 5, 2020; online access. Published online December 5, 2020.

Rothe A, Sasse S, Topp MS, et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(26):4024-4031. doi:10.1182/blood-2014-12-614636

Sawas A, Chen PH, Lipschitz M, Rodig S, Vlad G. Title: clinical and biological evaluation of the novel CD30/CD16A tetravalent bispecific antibody (AFM13) in relapsed or refractory CD30-positive lymphoma with cutaneous presentation: a biomarker phase Ib/IIa study (NCT03192202), abstract #2971. Presented at the 2020 ASH Annual Meeting and Exposition, December 7, 2020; online access. Published online December 7, 2020.

Gauthier L, Morel A, Anceriz N, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell. 2019;177(7):1701-1713.e16. doi:10.1016/j.cell.2019.04.041

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...