Compatible interaction of Brachypodium distachyon and endophytic fungus Microdochium bolleyi
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35286339
PubMed Central
PMC8920291
DOI
10.1371/journal.pone.0265357
PII: PONE-D-21-30855
Knihovny.cz E-zdroje
- MeSH
- Ascomycota * genetika MeSH
- Brachypodium * genetika mikrobiologie MeSH
- interakce hostitele a patogenu MeSH
- nemoci rostlin mikrobiologie MeSH
- pšenice genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Brachypodium distachyon is a useful model organism for studying interaction of cereals with phytopathogenic fungi. The present study tested the possibility of a compatible interaction of B. distachyon with the endophytic fungus Microdochium bolleyi originated from wheat roots. There was evaluated the effect of this endophytic fungus on the intensity of the attack by pathogen Fusarium culmorum in B. distachyon and wheat, and also changes in expression of genes (in B. distachyon: BdChitinase1, BdPR1-5, BdLOX3, BdPAL, BdEIN3, and BdAOS; and in wheat: TaB2H2(chitinase), TaPR1.1, TaLOX, TaPAL, TaEIN2, and TaAOS) involved in defence against pathogens. Using light microscopy and newly developed specific primers was found to be root colonization of B. distachyon by the endophyte M. bolleyi. B. distachyon plants, as well as wheat inoculated with M. bolleyi showed significantly weaker symptoms on leaves from infection by fungus F. culmorum than did plants without the endophyte. Expression of genes BdPR1-5, BdChitinase1, and BdLOX3 in B. distachyon and of TaPR1.1 and TaB2H2 in wheat was upregulated after infection with F. culmorum. M. bolleyi-mediated resistance in B. distachyon was independent of the expression of the most tested genes. Taken together, the results of the present study show that B. distachyon can be used as a model host system for endophytic fungus M. bolleyi.
Department of Botany Faculty of Science Palacký University in Olomouc Olomouc Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Plant Pathology Agrotest Fyto Ltd Kroměříž Czech Republic
Zobrazit více v PubMed
Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, et al.. Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 2001; 127(4):1539–1555. 10.1104/pp.010196 PubMed DOI PMC
Huo N, Vogel JP, Lazo GR, You FM, Ma Y, McMahon S, et al.. Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat. Plant Mol Biol. 2009; 70:47–61. 10.1007/s11103-009-9456-3 PubMed DOI
International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010; 463:763–768. 10.1038/nature08747 PubMed DOI
Fitzgerald TL, Powell JJ, Schneebeli K, Hsia MM, Gardiner DM, Bragg JN, et al.. Brachypodium as an emerging model for cereal-pathogen interactions. Ann Bot. 2015; 115(5):717–731. 10.1093/aob/mcv010 PubMed DOI PMC
Sandoya GV, Buanafina de Oliveira MM. Differential responses of Brachypodium distachyon genotypes to insect and fungal pathogens. Physiol Mol Plant Pathol. 2014; 85:53–64. 10.1016/j.pmpp.2014.01.001 DOI
Routledge APM, Shelley G, Smith JV, Talbot NJ, Draper J, Mur LAJ. Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice (Oryza sativa). Mol Plant Pathol. 2004; 5:253–265. 10.1111/j.1364-3703.2004.00224.x PubMed DOI
Peraldi A, Griffe LL, Burt C, McGrann GRD, Nicholson P. Brachypodium distachyon exhibits compatible interactions with Oculimacula spp. and Ramularia collo-cygni, providing the first pathosystem model to study eyespot and ramularia leaf spot diseases. Plant Path. 2014; 63:554–562. 10.1111/ppa.12114 PubMed DOI PMC
Schneebeli K, Mathesius U, Zwart AB, Bragg JN, Vogel JP, Watt M. Brachypodium distachyon genotypes vary in resistance to Rhizoctonia solani AG8. Funct Plant Biol. 2016; 43(2):189–198. 10.1071/FP15244 PubMed DOI
Peraldi A, Beccari G, Steed A, Nicholson P. Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat. BMC Plant Biol. 2011; 11:100. 10.1186/1471-2229-11-100 PubMed DOI PMC
Dinolfo MI, Martínez M, Nogueira MS, Nicholson P, Stenglein SA. Evaluation of interaction between Brachypodium distachyon roots and Fusarium species. Eur J Plant Pathol. 2021; 159:269–278. 10.1007/s10658-020-02159-7 DOI
Ayliffe M, Singh D, Park R, Moscou M, Pryor T. Infection of Brachypodium distachyon with selected grass rust pathogens. Mol Plant Microbe Interact. 2013; 26(8):946–957. 10.1094/MPMI-01-13-0017-R PubMed DOI
Barbieri M, Marcel TC, Niks RE, Francia E, Pasquariello M, Mazzamurro V, et al.. QTLs for resistance to the false brome rust Puccinia brachypodii in the model grass Brachypodium distachyon L. Genome. 2012; 55:152–163. 10.1139/g2012-001 PubMed DOI
Figueroa M, Alderman S, Garvin DF, Pfender WF. Infection of Brachypodium distachyon by formae speciales of Puccinia graminis: early infection events and host–pathogen incompatibility. PLoS One. 2013; 8:e56857. 10.1371/journal.pone.0056857 PubMed DOI PMC
Cui Y, Lee MY, Huo N, Bragg J, Yan L, Yuan C, et al.. Fine mapping of the Bsr1 barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon. PLoS One. 2012; 7(6):e38333. 10.1371/journal.pone.0038333 PubMed DOI PMC
Mandadi KK, Pyle JD, Scholthof KB. Comparative analysis of antiviral responses in Brachypodium distachyon and Setaria viridis reveals conserved and unique outcomes among C3 and C4 plant defenses. Mol Plant Microbe Interact. 2014; 27(11):1277–1290. 10.1094/MPMI-05-14-0152-R PubMed DOI
Desmond OJ, Manners JM, Stephens AE, Maclean DJ, Schenk PM, Gardiner DM, et al.. The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Mol Plant Path. 2008; 9:435–445. 10.1111/j.1364-3703.2008.00475.x PubMed DOI PMC
Parry DW, Jenkinson P, McLeod L. Fusarium ear blight in small grain cereals–a review. Plant Pathol. 1995; 44:207–238. 10.1111/j.1365-3059.1995.tb02773.x DOI
Poole GJ, Smiley RW, Walker C, Huggins D, Rupp R, Abatzoglou J, Garland-Campbell K, Paulitz TC. Effect of climate on the distribution of Fusarium spp. causing crown rot of wheat in the Pacific Northwest of the United States. Phytopathology. 2013; 103(11):1130–1140. doi: 10.1094/PHYTO-07-12-0181-R PubMed DOI
Backhouse D, Burgess LW. Climatic analysis of the distribution of Fusarium graminearum, F. pseudograminearum and F. culmorum on cereals in Australia. Australasian Plant Pathology. 2002; 31(4): 321–327. 10.1071/AP02026 DOI
Obanor F, Erginbas-Orakci G, Tunali B, Nicol JM, Chakraborty S. Fusarium culmorum is a single phylogenetic species based on multilocus sequence analysis. Fungal Biol. 2010; 114(9):753–65. 10.1016/j.funbio.2010.07.001 PubMed DOI
Hogg AC, Johnston RH, Johnston JA, Klouser L, Kephart KD, Dyer AT. Monitoring fusarium crown rot populations in spring wheat residues using quantitative real-time polymerase chain reaction. Phytopathology. 2010; 100:49–57. 10.1094/PHYTO-100-1-0049 PubMed DOI
Scherm B, Balmas V, Spanu F, Pani G, Delogu G, Pasquali M et al.. Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Mol Plant Pathol. 2013; 14(4):323–341. 10.1111/mpp.12011 PubMed DOI PMC
Dweba CC, Figlan S, Shimelis HA, Motaung TE, Sydenham S, Mwadzingeni L et al.. Fusarium head blight of wheat: pathogenesis and control strategies. Crop Protect. 2017; 91:114–122. 10.1016/j.cropro.2016.10.002 DOI
D’Angelo DL, Bradley CA, Ames KA, Willyerd KT, Madden LV, Paul PA. Efficacy of fungicide applications during and after anthesis against fusarium head blight and deoxynivalenol in soft red winter wheat. Plant Dis. 2014; 98:1387–1397. 10.1094/PDIS-01-14-0091-RE PubMed DOI
Khan NI, Schisler DA, Boehm MJ, Slininger PJ, Bothast RJ. Selection and evaluation of microorganisms for biocontrol of fusarium head blight of wheat incited by Gibberella zeae. Plant Dis. 2001; 85:1253–1258. 10.1094/PDIS.2001.85.12.1253 PubMed DOI
Rabiey M, Shaw MW. Piriformospora indica reduces Fusarium head blight disease severity and mycotoxin DON contamination in wheat under UK weather conditions. Plant Pathol. 2016; 65:940–952. 10.1111/ppa.12483. DOI
Sarrocco S, Valenti F, Manfredini S, Esteban P, Bernardi R, Puntoni G, et al.. Is exploitation competition involved in a multitrophic strategy for the biocontrol of fusarium head blight? Phytopathology. 2019; 109(4):560–570. 10.1094/PHYTO-04-18-0123-R PubMed DOI
Comby M, Gacoin M, Robineau M, Rabenoelina F, Ptas S, Dupont J, et al.. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiol Res. 2017; 202:11–20. 10.1016/j.micres.2017.04.014 PubMed DOI
Mandyam K, Loughin T, Jumpponen A. Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie. Mycologia. 2010; 102:813–821. 10.3852/09-212 PubMed DOI
Reinecke P, Fokkema NJ. An evaluation of methods of screening fungi from the Haulm base of cereals for antagonism to Pseudocercosporella herpotrichoides in wheat. Trans Br Mycol Soc. 1981; 77(2):343–350. 10.1016/s0007-1536(81)80036-8 DOI
Murray DIL, Gadd GM. Preliminary studies on Microdochium bolleyi with special reference to colonization of barley. Trans Br Mycol Soc. 1981; 76(3):397–403. 10.1016/S0007-1536(81)80065-4 DOI
Fatemi L. Shadmani S, Jamali A. Biocontrol activity of endophytic fungus of barley, Microdochium bolleyi, against Gaeumannomyces graminis var. tritici. Mycologia Iranica. 2018; 5(1):7–14. 10.22043/mi.2019.118205 DOI
Hong SK, Kim WG, Choi HW, Lee SY. Identification of Microdochium bolleyi associated with basal rot of creeping bent grass in Korea. Mycobiology. 2008; 36(2):77–80. 10.4489/MYCO.2008.36.2.077 PubMed DOI PMC
Hodges CF, Campbell DA. Infection of adventitious roots of Agrostis palustris by Idriella bolleyi. J. Phytopathol. 1996; 144:265–271. 10.1111/j.1439-0434.1996.tb01527.x DOI
Damm U, Brune A, Mendgen K. In vivo observation of conidial germination at the oxic–anoxic interface and infection of submerged reed roots by Microdochium bolleyi. FEMS Microbiol Ecol. 2003; 45(3):293–299. doi: 10.1016/S0168-6496(03)00161-2 PubMed DOI
Jumpponen A, Trappe JM. Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol. 1998; 140:295–310. 10.1046/j.1469-8137.1998.00265.x PubMed DOI
De Hoog GS, Hermanides-Nijhof EJ. Survey of the black yeasts and allied fungi. Microdochium bolleyi (R Sprague). Stud Mycol. 1977; 15: 178–223.
Kirk JJ, Deacon JW. Control of the take–all fungus by Microdochium bolleyi, and interactions involving M. bolleyi, Phialophora graminicola and Periconia macrospinosa on cereal roots. Plant Soil. 1987; 98:231–237. 10.1007/BF02374826 DOI
Sieber T, Riesen T, Müller E, Fried P. Endophytic fungi in four winter wheat cultivars (Triticum aestivum L.) differing in resistance against Stagonospora nodorum (Berk.) Cast. & Germ. = Septoria nodorum (Berk.) Berk. J. Phytopathol. 1988; 122:289–306. 10.1111/j.1439-0434.1988.tb01021.x DOI
Duczek LJ. Biological control of common root rot in barley by Idriella bolleyi. Can. J. Plant Pathol. 1997; 19:402–405. 10.1080/07060669709501067 DOI
Comby M, Gacoin M, Robineau M, Rabenoelina F, Ptas S, Dupont J, Profizi C, Baillieul F. Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiological Research. 2017; 202:11–20. 10.1016/j.micres.2017.04.014 PubMed DOI
Schilling AG, Moller EM, Geiger HH. Polymerase chain reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum, and F. avenaceum. Phytopathology. 1996; 86(5):515–522. 10.1094/Phyto-86-515. DOI
Bleša D, Matušinský P, Sedmíková R, Baláž M. The potential of Rhizoctonia-like fungi for the biological protection of cereals against fungal pathogens. Plants-Basel. 2021; 10(2):349. 10.3390/plants10020349 PubMed DOI PMC
Hernández-Restrepo M, Groenewald JZ, Crous PW. Taxonomic and phylogenetic re-evaluation of Microdochium, Monographella and Idriella. Persoonia. 2016; 36:57–82. 10.3767/003158516X688676 PubMed DOI PMC
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007; 35:71–74. 10.1093/nar/gkm306 PubMed DOI PMC
White TJ, Bruns TD, Lee SB, Taylor JW, Innis MA, Gelfand DH, et al.. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR—protocols and applications—a laboratory manual. Cambridge: Academic Press; 1990. p. 315–322. 10.1016/B978-0-12-372180-8.50042-1 DOI
Travella S, Klimm TE, Keller B. RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol. 2006; 142:6–20. 10.1104/pp.106.084517 PubMed DOI PMC
Sun H, Guo Z, Gao L, Zhao G, Zhang W, Zhou R, et al.. DNA methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum). New Phytol. 2014; 204(3):682–692. 10.1111/nph.12948 PubMed DOI
Hong SY, Seo PJ, Yang MS, Xiang F, Park CM. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol. 2008; 8:112. 10.1186/1471-2229-8-112 PubMed DOI PMC
Constantin ME, de Lamo FJ, Vlieger BV, Rep M, Takken FLW. Endophyte-mediated resistance in tomato to Fusarium oxysporum is independent of ET, JA, and SA. Front Plant Sci. 2019; 10:979. 10.3389/fpls.2019.00979 PubMed DOI PMC
Fravel D, Olivain C, Alabouvette C. Fusarium oxysporum and its biocontrol. New Phytol. 2003; 157:493–502. 10.1046/j.1469-8137.2003.00700.x PubMed DOI
Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PA. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol. 2014; 52:347–375. 10.1146/annurev-phyto-082712-102340 PubMed DOI
Sequeira L. Mechanisms of induced resistance in plants. Annu Rev Microbiol. 1983; 37:51–79. 10.1146/annurev.mi.37.100183.000411 PubMed DOI
Siegel MR, Latch GCM, Johnson MC. Acremonium fungal endophytes of tall fescue and perennial ryegrass: significance and control. Plant Dis. 1985; 69(2):179–183. 10.1094/PD-69-179. DOI
Tian P, Nan Z, Li C, Spangenberg G. Effect of the endophyte Neotyphodium lolii on susceptibility and host physiological response of perennial ryegrass to fungal pathogens. Eur J Plant Pathol. 2008; 122:593–602. 10.1007/s10658-008-9329-7 DOI
Siegel MR, Latch JC, Bush LP, Fannin FF, Rowan DD, Tapper BA, et al.. Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. J Chem Ecol. 1990; 16:301–315. 10.1007/BF00982100 PubMed DOI
Clay K. Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycol Res. 1989; 92:1–12. 10.1016/S0953-7562(89)80088-7 DOI
Bae H, Roberts DP, Lim H-S, Strem MD, Park S-C, Ryu C-M, et al.. Endophytic Trichoderma isolates from tropical environments delay disease and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant Microbe Interact. 2011; 24(3):336–351. 10.1094/MPMI-09-10-0221 PubMed DOI
Su Z-Z, Mao L-J, Li N, Feng X-X, Yuan Z-L, et al.. Evidence for Biotrophic Lifestyle and Biocontrol Potential of Dark Septate Endophyte Harpophora oryzae to Rice Blast Disease. PLoS ONE. 2013; 8(4): e61332. 10.1371/journal.pone.0061332 PubMed DOI PMC
Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, et al.. Fungal endophytes limit pathogen damage in a tropical tree. Proc.Natl.Acad.Sci.U.S.A. 2003; 100:15649–15654. doi: 10.1073/pnas.2533483100 PubMed DOI PMC
Mejia LC, Rojas EI, Maynard Z, VanBael SA, Arnold EA, Hebbar P, et al.. Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol. Control. 2008; 46: 4–14. 10.1016/j.biocontrol.2008.01.012. DOI
Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA, Stitt J, Shi Z, Zhang Y, Guiltinan MJ, Maximova SN. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol. 2014; 5:479. 10.3389/fmicb.2014.00479 PubMed DOI PMC
Lyons R, Manners JM, Kazan K. Jasmonate biosynthesis and signaling in monocots: a comparative overview. Plant Cell Rep. 2013; 32(6):815–827. 10.1007/s00299-013-1400-y PubMed DOI
Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, et al.. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell. 1991; 3(10):1085–1094. 10.1105/tpc.3.10.1085 PubMed DOI PMC
Kouzai Y, Kimura M, Yamanaka Y, Watanabe M, Matsui H, Yamamoto M, et al.. Expression profiling of marker genes responsive to the defence-associated phytohormones salicylic acid, jasmonic acid and ethylene in Brachypodium distachyon. BMC Plant Biol. 2016; 16(59):1–11. 10.1186/s12870-016-0749-9 PubMed DOI PMC
De Coninck B, Timmermans P, Vos C, Cammue BPA, Kazan K. What lies beneath: belowground defense strategies in plants. Trends Plant Sci. 2015; 20:91–101. 10.1016/j.tplants.2014.09.007 PubMed DOI
Wang F, Yuan S, Wu W, Yang Y, Cui Z, Wang H, et al.. TaTLP1 interacts with TaPR1 to contribute to wheat defense responses to leaf rust fungus. PLoS Genet. 2020; 16(7):e1008713. 10.1371/journal.pgen.1008713 PubMed DOI PMC
Breen S, Williams SJ, Winterberg B, Kobe B, Solomon PS. Wheat PR-1 proteins are targeted by necrotrophic pathogen effector proteins. Plant J. 2016; 88:13–25. 10.1111/tpj.13228 PubMed DOI
Gamir J, Darwiche R, Van’t Hof P, Choudhary V, Stumpe M, Schneiter R, et al.. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. Plant J. 2017; 89:502–509. 10.1111/tpj.13398 PubMed DOI
Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, et al.. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res. 2018; 212–213:29–37. 10.1016/j.micres.2018.04.008 PubMed DOI
Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H, Hirose S, et al.. Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds. Mol Gen Genomics. 2008; 279(4):415–427. 10.1007/s00438-008-0322-9 PubMed DOI PMC
Molina A, Görlach J, Volrath S, Ryals J. Wheat genes encoding two types of PR-1 proteins are pathogen inducible, but do not respond to activators of systemic acquired resistance. Mol Plant Microbe Interact. 1999; 12(1):53–58. 10.1094/MPMI.1999.12.1.53 PubMed DOI
Zhang J, Yan H, Xia M, Han X, Xie L, Goodwin PH, et al.. Wheat root transcriptional responses against Gaeumannomyces graminis var. tritici. Phytopathol Res. 2020; 2(23):1–14. 10.1186/s42483-020-00066-7 DOI
Creelman RA, Mullet JE. Biosynthesis and action of jasmonates in plants. Annu Rev Plant Biol. 1997; 48:355–381. 10.1146/annurev.arplant.48.1.355 PubMed DOI
Mueller MJ. Enzymes involved in jasmonic acid biosynthesis. Physiol Plant. 1997; 100:653–663. 10.1111/j.1399-3054.1997.tb03072.x DOI
Harms K, Ramirez II, Peña-Cortés H. Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiol. 1998; 118(3):1057–1065. 10.1104/pp.118.3.1057 PubMed DOI PMC
Laudert D, Weiler EW. Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J. 1998; 15(5):675–684. 10.1046/j.1365-313x.1998.00245.x PubMed DOI
Zeng J, Zhang T, Huangfu J, Li R, Lou Y. Both allene oxide synthases genes are involved in the biosynthesis of herbivore-induced jasmonic acid and herbivore resistance in rice. Plants (Basel). 2021; 10(3):442. 10.3390/plants10030442 PubMed DOI PMC
Ors ME, Randoux B, Selim S, Siah A, Couleaud G, Maumené C, et al.. Cultivar-dependent partial resistance and associated defence mechanisms in wheat against Zymoseptoria tritici. Plant Path. 2018; 67:561–572. 10.1111/ppa.12760. DOI
Gottwald S, Samans B, Lück S, Friedt W. Jasmonate and ethylene dependent defence gene expression and suppression of fungal virulence factors: two essential mechanisms of Fusarium head blight resistance in wheat? BMC Genomics. 2012; 13:396. 10.1186/1471-2164-13-369 PubMed DOI PMC
Tonnessen BW, Manosalva P, Lang JM, Baraoidan M, Bordeos A, Mauleon R, et al.. Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance. Plant Mol Biol. 2015; 87(3):273–286. 10.1007/s11103-014-0275-9 PubMed DOI
Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry. 2003; 64(1):153–161. doi: 10.1016/s0031-9422(03)00151-1 PubMed DOI
Cass CL, Peraldi A, Dowd PF, Mottiar Y, Santoro N, Karlen SD, et al.. Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J Exp Bot. 2015; 66(14):4317–4335. 10.1093/jxb/erv269 PubMed DOI PMC
Johnson PR, Ecker JR. The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet. 1998; 32:227–254. 10.1146/annurev.genet.32.1.227 PubMed DOI
Ecker JR, Davis RW. Plant defense genes are regulated by ethylene. Proc Natl Acad Sci USA. 1987; 84(15):5202–5206. 10.1073/pnas.84.15.5202 PubMed DOI PMC
Solano R, Stepanova AN, Chao Q, Ecker JR. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 1998; 12:3703–3714. 10.1101/gad.12.23.3703 PubMed DOI PMC
Chao Q, Rothenberg M, Solano S, Roman G, Terzaghi W, Ecker JE. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997; 89:1133–1144. doi: 10.1016/s0092-8674(00)80300-1 PubMed DOI
Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C, et al.. Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc Natl Acad Sci USA. 2010; 107:14502–14507. 10.1073/pnas.1003347107 PubMed DOI PMC
Liu R, Chen L, Jia Z, Lü B, Shi H, Shao W, et al.. Transcription factor AtMYB44 regulates induced expression of the ETHYLENE INSENSITIVE2 gene in Arabidopsis responding to a harpin protein. Mol Plant Microbe Interact. 2011; 24(3):377–389. 10.1094/MPMI-07-10-0170 PubMed DOI
Zhu Z, An F, Feng Y, Li P, Xue L, Mu A, et al.. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA. 2011; 108:12539–12544. 10.1073/pnas.1103959108 PubMed DOI PMC
Ghimire SR, Charlton ND, Bell JD, Krishnamurthy YL, Craven KD. Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Divers. 2011; 47:19–27. 10.1007/s13225-010-0085-6. DOI
Xia Y, Sahib MR, Amna A, Opiyo SO, Zhao Z, Gao YG. Culturable endophytic fungal communities associated with plants in organic and conventional farming systems and their effects on plant growth. Sci Rep. 2019; 9:1669. 10.1038/s41598-018-38230-x PubMed DOI PMC
McKinnon AC. Plant tissue preparation for the detection of an endophytic fungus in planta. Methods Mol Biol. 2016; 1477:167–173. 10.1007/978-1-4939-6367-6_13 PubMed DOI
Ernst M, Neubert K, Mendgen KW, Wirsel SGR. Niche differentiation of two sympatric species of Microdochium colonizing the roots of common reed. BMC Microbiol. 2011; 11:242. 10.1186/1471-2180-11-242 PubMed DOI PMC
Groppe K, Boller T. PCR assay based on a microsatellite-containing locus for detection and quantification of Epichloë endophytes in grass tissue. Appl Environ Microbiol. 1997; 63(4):1543–1550. 10.1128/AEM.63.4.1543-1550 PubMed DOI PMC
Doss RP, Clement SL, Kuy S-R, Welty RE. A PCR-based technique for detection of Neotyphodium endophytes in diverse accessions of tall fescue. Plant Dis. 1998; 82:738–740. 10.1094/PDIS.1998.82.7.738 PubMed DOI
Kelemu S, Dongyi H, Guixiu H, Takayama Y. Detecting and differentiating Acremonium implicatum: developing a PCR-based method for an endophytic fungus associated with the genus Brachiaria. Mol Plant Pathol. 2003; 4(2):115–118. 10.1046/j.1364-3703.2003.00157.x PubMed DOI