DNA dyes: toxicity, remediation strategies and alternatives

. 2022 Aug ; 67 (4) : 555-571. [epub] 20220315

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35292916
Odkazy

PubMed 35292916
DOI 10.1007/s12223-022-00963-8
PII: 10.1007/s12223-022-00963-8
Knihovny.cz E-zdroje

Release of untreated effluent from processing or manufacturing industries and other commercial premises into water bodies is a major threat to environment and human health. In this regard, the effluent generated from laboratories and other research facilities is of great concern. Among other harmful chemicals, the effluent is rich in toxic organic dyes, which get exposed to the environment and pose serious health risk. The dyes used in nucleic acid analysis specially the DNA dyes are known for their teratogenicity and mutagenic potential, which mainly depends upon the organism and circumstances under which it is exposed. Among animals and humans, exposure to theses dyes may lead to irritation in mouth, eyes and respiratory tract and many other possible effects which are yet to be explored. To overcome these problems, dyes present in the effluents from laboratories must be degraded to non-toxic forms. Various strategies have been proposed and investigated for degradation and remediation of contaminated laboratory effluent. As a modern and cost-effective technique, biodegradation using microbes and plants is potentially eco-friendly and sustainable technique for detoxifying these dyes. In this article, we have discussed and reviewed the structure, properties and toxicity profile of prominent nucleic acid dyes, along with the strategies of remediation of laboratory effluents contaminated with these dyes. In addition, we have also discussed the feasibility and limitations of these remediation strategies and identified research gaps that can help researchers to explore more effective solutions to manage this area of great concern. We have also reviewed various less toxic alternatives of these common as safer options of these dyes.

Zobrazit více v PubMed

Adelin MA, Gunawan G, Nur M, Haris A, Widodo DS, Suyati L (2020) Ozonation of methylene blue and its fate study using LC-MS/MS. J Phys: Conf Ser https://doi.org/10.1088/1742-6596/1524/1/012079

Aidoo A, Gao N, Neft RE, Schol HM, Hass BS, Minor TY, Heflich RH (1990) Evaluation of the genotoxicity of gentian violet in bacterial and mammalian cell systems. Teratog Carcinog Mutagen 10:449–462 PubMed DOI

Ai-jawhari IFH (2015) Decolorization of methylene blue and crystal violet by some filamentous fungi. Int J Environ Bioremediat Biodegrad 3:62–65

Ajao AT, Adebayo GB, Yakubu SE (2011) Bioremediation of textile industrial effluent using mixed culture of Pseudomonas aeruginosa and Bacillus subtilis immobilized on agar-agar in a bioreactor. J Microbiol Biotechnol 1:50–56

Alam MZ, Mansor MF, Jalal KC (2009) Optimization of decolorization of methylene blue by lignin peroxidase enzyme produced from sewage sludge with Phanerocheate chrysosporium. J Hazard Mater 162(2–3):708–715 PubMed DOI

Almeida LR, de Souza JSN, da Silva Filho EC, Osajima JA (2016) Photocatalysis of coomassie brilliant blue using clay mineral. Mater Sci Forum 869:765–767. https://doi.org/10.4028/www.scientific.net/MSF.869.765 DOI

Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res 31:347–363 PubMed DOI

Amirijavid S, Chizari M, Sadrzadeh M (2014) Phytoremediation of ethidium bromide by tomato and alfalfa plants. Int J Plant Biol Res 2:69–74

Ayed L, Cheriaa J, Laadhari N, Cheref A, Bakhrouf A (2009) Biodegradation of crystal violet by an isolated Bacillus sp. Ann Microbiol 59:267–272 DOI

Baeumle M, Merck (2009) Nancy-520 for DNA detection and quantitation. https://www.sigmaaldrich.com/technical-documents/articles/biofiles/dna - detection.html. Accessed 30 Sept 2021

Bharagava RN, Mani S, Mulla SI, Saratale GD (2018) Degradation and decolourization potential of a ligninolytic enzyme producing Aeromonas hydrophila for crystal violet dye and its phytotoxicity evaluation. Ecotoxicol Environ Saf 156:166–175. https://doi.org/10.1016/j.ecoenv.2018.03.012 PubMed DOI

Bharathiraja B, Jayamuthunagai J, Praveenkumar R, Iyyappan J (2018) Phytoremediation techniques for the removal of dye in wastewater. In Bioremediation: applications for environmental protection and management. 243–252. https://doi.org/10.1007/978-981-10-7485-1_12

Bharti V, Vikrant K, Goswami M, Tiwari H, Sonwani RK, Lee J, Singh RS (2019) Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environ Res 171:356–364. https://doi.org/10.1016/j.envres.2019.01.051 PubMed DOI

Biotium (2021) Your gel stain< https://biotium.com/wp-content/uploads/2017/05/How-Safe-is-Your-Gel-Stain.pdf . Accessed on 25 Sept 2021

Borah G, Baruah PS, Lahkar L, Tanti B (2018) Cytotoxic effect of acridine orange and ethidium bromide on Allium cepa L. and Oryza sativa L. Biosci Discov 9:251–259

Bourzac KM, LaVine LJ, Rice MS (2003) Analysis of DAPI and SYBR green I as alternatives to ethidium bromide for nucleic acid staining in agarose gel electrophoresis. J Chem Edu 80:1292 DOI

Bumpus JA, Brock BJ (1988) Biodegradation of crystal violet by the white rot fungus Phanerocheate chrysosporium. Appl Environ Microbiol 54:1143–1150 PubMed DOI PMC

Byvaltsev VA, Bardonova LA, Onaka NR, Polkin RA, Ochkal SV, Shepelev VV, Aliyev MA, Potapov AA (2019) Acridine orange: a review of novel applications for surgical cancer imaging and therapy. Front Oncol 9:925. https://doi.org/10.3389/fonc.2019.00925 PubMed DOI PMC

Canteli A, Carpine D, Doná G, Takashina T, Scheer ADP, Igarashi-mafra l, (2015) Photo-Fenton and adsorption combined process for degradation and removing of coomassie brilliant blue dye from aqueous solution. Blucher Chem Eng Proc 1:7362–7369

Chen CC, Wu RJ, Tzeng YY, Lu CS (2009) Chemical oxidative degradation of acridine orange dye in aqueous solution by Fenton’s reagent. J Chin Chem Soc 56:1147–1155. https://doi.org/10.1002/jccs.200900165 DOI

Chen CC, Liao HJ, Cheng CY, Yen CY, Chung YC (2007) Biodegradation of crystal violet by Pseudomonas putida. Biotechnol Lett 29:391–396 PubMed DOI

Chen H, Jin X, Zhu K, Yang R (2002) Photocatalytic oxidative degradation of acridine orange in aqueous solution with polymeric metalloporphyrins. Water Res 36:4106–4112. https://doi.org/10.1016/S0043-1354(02)00116-1 PubMed DOI

Contreras M, Grande Tovar CD, Vallejo W, ChavesLópez C (2019) Bio-removal of methylene blue from aqueous solution by Galactomyces geotrichum KL20A. Water 11:282. https://doi.org/10.3390/w11020282 DOI

Cwalinski T, Polom W, Marano L, Roviello G, D’Angelo A, Cwalina N, Polom K (2020) Methylene blue current knowledge, fluorescent properties, and its future use. J Clin Med 9:3538. https://doi.org/10.3390/jcm9113538 DOI PMC

Dagher S, Soliman A, Ziout A, Tit N, Hilal-Alnaqbi A, Khashan S, Qudeiri JA (2018) Photocatalytic removal of methylene blue using titania-and silica-coated magnetic nanoparticles. Mater Res Exp 5:065518. https://doi.org/10.1088/2053-1591/aacad4 DOI

Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M (2007) Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresour Technol 98:1176–1182. https://doi.org/10.1016/j.biortech.2006.05.025 PubMed DOI

de Almeida HC, Salomão ALDS, Lambert J, Teixeira LCRS, Marques M (2020) Phycoremediation potential of microalgae species for ethidium bromide removal from aqueous media. Int J Phytoremediation 22:1168–1174. https://doi.org/10.1080/15226514.2020.1743968 PubMed DOI

Debroy A, George N, Mukherjee G (2021) Role of biofilms in the degradation of microplastics in aquatic environments. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6978 DOI

Diaz F, Bayona-Bafaluy MP, Rana M, Mora M, Hao H, Moraes CT (2002) Human mitochondrial DNA with large deletions repopulates organelles faster than full length genomes under relaxed copy number control. Nucleic Acids Res 30:4626–4633. https://doi.org/10.1093/nar/gkf602 PubMed DOI PMC

El-Ella Hussein Gad AA, Youssef A, Ghannam HES, Zedan AF, Aboulthana WM, Al-Sherbini AS. (2020) Synthesis of high efficient CS/PVDC/TiO

Erenpreisa J, Krigerts J, Salmina K, Selga T, Sorokins H, Freivalds T (2018) Differential staining of peripheral nuclear chromatin with acridine orange implies an A-form epichromatin conformation of the DNA. Nucleus 9:171–181. https://doi.org/10.1080/19491034.2018.1431081 PubMed DOI PMC

Estandarte AK, Botchway S, Lynch C, Yusuf M, Robinson I (2016) The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes. Sci Rep 6:1–12. https://doi.org/10.1038/srep31417 DOI

Eslami H, SedighiKhavidak S, Salehi F, Khosravi R, Peirovi R (2017) Biodegradation of methylene blue from aqueous solution by bacteria isolated from contaminated soil. J Adv Environ Health Res 5:10–15

Farraji H, Zaman NQ, Tajuddin R, Faraji H (2016) Advantages and disadvantages of phytoremediation: a concise review. Int J Environ Technol Sci 2:69–75

Galindo-Murillo R, Cheatham IIITE (2021) Ethidium bromide interactions with DNA: an exploration of a classic DNA–ligand complex with unbiased molecular dynamics simulations. Nucleic Acids Res 49:3735–3747. https://doi.org/10.1093/nar/gkab143 PubMed DOI PMC

Gan L, Cheng Y, Palanisami T, Chen Z, Megharaj M, Naidu R (2014) Pathways of reductive degradation of crystal violet in wastewater using free-strain Burkholderia vietnamiensis C09V. Environ Sci Pollut Res 21:10339–10348 DOI

George N, Debroy A, Bhat S, Singh S, Bindal S (2021) Biowaste to bioplastics: an ecofriendly approach for a sustainable future. J Appl Biotechnol Rep 8:221–233

Gill PK, Arora DS, Chander M (2002) Biodecolourization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia spp. Journal of Industrial Microbiology and Biotechnology, 28:201-203. PubMed DOI

Habibi A, Mehrabi Z (2017) Aerobic degradation of methylene blue from colored effluents by Ralstonia eutropha. Pollution 3:363–375

Haines AM, Tobe SS, Kobus HJ, Linacre A (2015) Properties of nucleic acid staining dyes used in gel electrophoresis. Electrophoresis, 36(6):941-944. PubMed DOI

Imron MF, Kurniawan SB, Soegianto A, Wahyudianto FE (2019) Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon 5:e02206. https://doi.org/10.1016/j.heliyon.2019.e02206 PubMed DOI PMC

Itoh K, Kitade Y, Kobayashi S, Nakanishi M, Yatome C (1998) Demethylation of acridine orange by Arthrobacter globiformis. Bull Environ Contam Toxicol 60:781–785. https://doi.org/10.1007/s001289900694 PubMed DOI

Jadeja A, Bharti D, Meenaxi P (2014) Mycoremediation of coomassie brilliant blue by Aspergillus spp. Biotechnol 10:15567–15571

Jańczyk A, Krakowska E, Stochel G, Macyk W (2006) Singlet oxygen photogeneration at surface modified titanium dioxide. J Am Chem Soc 128:15574–15575. https://doi.org/10.1021/ja065970m PubMed DOI

Jyoti K, Singh A (2016) Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J Genet Eng Biotechnol 14:311–317. https://doi.org/10.1016/j.jgeb.2016.09.005 PubMed DOI PMC

Khan SA, Arshad T, Faisal M, Shah Z, Shaheen K, Suo H, Khan SB (2019) Al–Sr metal oxides and Al–Cd layered double hydroxides for the removal of acridine orange dye in visible light exposure. J Mat Sci: Mat Elect 30:15299–15312. https://doi.org/10.1007/s10854-019-01903-y DOI

Kirsanov KI, Lesovaya EA, Yakubovskaya MG, Belitsky GA (2010) SYBR gold and SYBR green II are not mutagenic in the Ames test. Mutat Res 699:1–4. https://doi.org/10.1371/journal.pone.0235303 PubMed DOI

Křesinová Z, Linhartová L, Filipová A, Ezechiáš M, Mašín P, Cajthaml T (2018) Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor. N Biotechnol 43:53–61. https://doi.org/10.1016/j.nbt.2017.05.004 PubMed DOI

Kumar A, Swarupa P, Gandhi VP, Kumari S (2017a) Isolation of ethidium bromide degrading bacteria from Jharkhand. Int J Appl Sci Biotechnol 5:293–301. https://doi.org/10.3126/ijasbt.v5i3.18296 DOI

Kumar AA, Rajini A, Venkatathri N (2017b) Synthesis and characterization of magnetically separable porous titanium silicate nanocomposite catalyst for environmental applications. Mater Today: Proc 4:19–24

Kunjadia PD, Patel FD, Nagee A, Mukhopadhyaya PN, Dave GS (2012) Crystal violet (triphenylmethane dye) decolorization potential of Pleurotus ostreatus (MTCC 142). BioResources 7:1189–1199

Lauretti F, de Melo FL, Benati FJ, de Mello VE, Santos N, Linhares REC, Nozawa C (2003) Use of acridine orange staining for the detection of rotavirus RNA in polyacrylamide gels. J Virol Methods 114:29–35. https://doi.org/10.1016/j.jviromet.2003.08.005 PubMed DOI

Lavand AB, Malghe YS (2016) Visible-light photocatalytic degradation of ethidium bromide using carbon-and iron-modified TiO DOI

Ledakowicz S, Paździor K (2021) Recent achievements in dyes removal focused on advanced oxidation processes integrated with biological methods. Molecules 26:870 PubMed DOI PMC

Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3:275–290 DOI

Lin D, Zhao Q, Hu L, Xing B (2014) Synthesis and characterization of cubic mesoporous bridged polysilsesquioxane for removing organic pollutants from water. Chemosphere 103:188–196. https://doi.org/10.1016/j.chemosphere.2013.11.062 PubMed DOI

Lu CS, Chen CC, Huang LK, Tsai PA, Lai HF (2013) Photocatalytic degradation of acridine orange over NaBiO DOI

Maas AS, Silva NJ, Costa AS, Barros AR, Bomfeti CA (2018) The degradation of methylene blue dye by the strains of Pleurotus sp. with potential applications in bioremediation processes. Rev Ambiente Agua https://doi.org/10.4136/ambi-agua.2247

Mani S, Bharagava RN (2016) Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Rev Environ Contam Toxicol 237:71–104. https://doi.org/10.1007/978-3-319-23573-8_4 PubMed DOI

Marcos R, de Sepúlveda JL, Xamena N, Creus A (1981) Effect of ethidium bromide on Drosophila melanogaster and Drosophila simulans. Experientia 37:559–560. https://doi.org/10.1007/BF01990047 DOI

Mary JE, Krithika T, Kavitha R (2020) Biodegradation of textile dye by ligninolytic bacteria isolated from Western Ghats. Int J Res Rev 7:22–29

McKee DR, Thomson MS (2004) Nucleic acid stain-dependent single strand conformation polymorphisms. Biotechniques 37:46–50 PubMed DOI

Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343:463–473 PubMed DOI

Moradi O, Norouzi M, Fakhri A, Naddafi K (2014) Interaction of removal ethidium bromide with carbon nanotube: equilibrium and isotherm studies. J Environ Health Sci 12:1–9

MuhdJulkapli N, Bagheri S, Bee AbdHamid S (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. The Sci World J. https://doi.org/10.1155/2014/692307 DOI

Nandhini NT, Rajeshkumar S, Mythili S (2019) The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatal Agric Biotechnol 19:101138. https://doi.org/10.1016/j.bcab.2019.101138 DOI

Nardekar SS, Kale RD (2017) Degradation of methylene blue dye using activated carbon obtained from bio-waste. Int J Res Appl Sci Eng Tech 5:2050–2054 DOI

Neeraja M, Lakshmi V, Padmasri C, Padmaja K (2017) Utility of acridine orange staining for detection of bacteria from positive blood cultures. J Microbiol Methods 139:215–217. https://doi.org/10.1016/j.mimet.2017.06.014 PubMed DOI

Nosaka AY, Kojima E, Fujiwara T, Yagi H, Akutsu H, Nosaka Y (2003) Photoinduced changes of adsorbed water on a TiO DOI

Nunez O, Chavez B, Shaktah R, Garcia PP, Minehan T (2019) Synthesis and DNA binding profile of monomeric, dimeric, and trimeric derivatives of crystal violet. Bioorg chem 83:297–302. https://doi.org/10.1016/2Fj.bioorg.2018.10.040

Ogunlaja A, Nwankwo IN, Omaliko ME, Olukanni OD (2020) Biodegradation of methylene blue as an evidence of synthetic dyes mineralization during textile effluent biotreatment by Acinetobacter pittii. Environ Processes 7:931–947. https://doi.org/10.1007/s40710-020-00443-6 DOI

Ohno A, Umezawa K, Asai S, Kryukov K, Nakagawa S, Miyachi H, Imanishi T (2021) Rapid profiling of drug-resistant bacteria using DNA-binding dyes and a nanopore-based DNA sequencer. Sci Rep 11:1–7. https://doi.org/10.1038/s41598-021-82903-z DOI

Okamoto DN, Oliveira LCGD, Manzato JA, Almeida EAD, Ceron CR, Bonilla-Rodriguez GO (2010) Coomassie brilliant blue dye toxicity screen using Drosophila melanogaster (Diptera-Drosophilidae). Drosoph Inf Serv 93:40–47

Ouchi RY, Manzato AJ, Ceron CR, Bonilla-Rodriguez GO (2007) Evaluation of the effects of a single exposure to ethidium bromide in Drosophila melanogaster (Diptera-Drosophilidae). Bull Environ Contam Toxicol 78:489–493 PubMed DOI

Pan T, Ren S, Guo J, Xu M, Sun G (2013) Biosorption and biotransformation of crystal violet by Aeromonas hydrophila DN322p. Front Environ Sci Eng 7:185–190 DOI

Pare B, Jonnalagadda SB, Tomar H, Singh P, Bhagwat VW (2008) ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination 232:80–90. https://doi.org/10.1016/j.desal.2008.01.007 DOI

Parshetti GK, Parshetti SG, Telke AA, Kalyani DC, Doong RA, Govindwar SP (2011) Biodegradation of crystal violet by Agrobacterium radiobacter. J Enviro Sci 23:1384–1393 DOI

Patel Y, Chhaya U, Rudakiya DM, Joshi S (2021) Biological decolorization and degradation of synthetic dyes: a green step toward sustainable environment. In Microbial rejuvenation of polluted environment 2021 (pp. 77–110). Springer, Singapore

Patil SM, Berde CV (2015) Biodegradation of carcinogenic dye, ethidium bromide by soil microorganisms. World J Pharm Pharm Sci 4:1210–1219

Qing HU, Dou MN, Qi HY, Xie XM, Zhuang GQ, Min YANG (2007) Detection, isolation and identification of cadmium-resistant bacteria based on PCR-DGGE. J Environ Sci 19:1114–1119. https://doi.org/10.1016/S1001-0742(07)60181-8 DOI

Rohs R, Sklenar H (2001) Methylene blue binding to DNA with alternating GC base sequence: continuum treatment of salt effects. Indian J Biochem Biophys 38:1–6 PubMed

Roy Chowdhury A, Bakshi R, Wang J, Yildirir G, Liu B, Pappas-Brown V, Englund PT (2010) The killing of African trypanosomes by ethidium bromide. PLoS Pathog 6:12 DOI

Roy DC, Biswas SK, Saha AK, Sikdar B, Rahman M, Roy AK, Prodhan ZH, Tang SS (2018) Biodegradation of crystal violet dye by bacteria isolated from textile industry effluents. PeerJ 6:1–15. https://doi.org/10.7717/peerj.5015 DOI

Sahoo C, Gupta AK, Pal A (2005) Photocatalytic degradation of crystal violet (CI basic violet 3) on silver ion doped TiO DOI

Shad NA, Zahoor M, Bano K, Bajwa SZ, Amin N, Ihsan A, Khan WS (2017) Synthesis of flake-like bismuth tungstate (Bi2WO6) for photocatalytic degradation of coomassie brilliant blue (CBB). Inorg Chem Commun 86:213–217 DOI

Shah M, Patel K, Nair S (2013) Microbiological removal of crystal violet dye by Bacillus subtilis ETL-2211. OA Biotechnol 2:1–7 DOI

Shah MP (2019) Bioremediation of azo dye. In Microbial wastewater treatment (pp. 103–126). Elsevier

Shanmugam S, Ulaganathan P, Sivasubramanian S, Esakkimuthu S, Krishnaswamy S, Subramaniam S (2017) Trichoderma asperellum laccase mediated crystal violet degradation–optimization of experimental conditions and characterization. J Environ Chem Eng 5:222–231 DOI

Sharma S, Dutta V, Singh P, Raizada P, Rahmani-Sani A, Hosseini-Bandegharaei A, Thakur VK (2019) Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. J Clean Prod 228:755–769. https://doi.org/10.1016/j.jclepro.2019.04.292 DOI

Siddique F, Rafiq MA, Afsar MF, Hasan MM, Chaudhry MM (2018) Enhancement of degradation of mordant orange, safranin-O and acridine orange by CuS nanoparticles in the presence of H

Singer VL, Lawlor TE, Yue S (1999) Comparison of SYBR® green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test). Mutat Res 439:37–47. https://doi.org/10.1016/S1383-5718(98)00172-7 PubMed DOI

Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol 41:807–878. https://doi.org/10.1080/10643380903218376 DOI

Singh S, Singh AN (2018) Ethidium bromide: is a stain turning into a pollutant? A synthesis on its status, waste management, monitoring challenges and ecological risks to the environment. Int J Res Anal Rev 5:226–233

Soltaninejad H, Sadeghan AA, Hosseinkhani S, Asadollahi MA, Hosseini M, Ganjali MR (2019) Application of intercalating molecules in detection of methylated DNA in the presence of silver ions. Methods Appl Fluoresc 7:035005. https://doi.org/10.1088/2050-6120/ab025b PubMed DOI

Stevenson P, Sones KR, Gicheru MM, Mwangi EK (1995) Comparison of isometamidium chloride and homidium bromide as prophylactic drugs for trypanosomiasis in cattle at Nguruman, Kenya. Acta Trop 59:77–84. https://doi.org/10.1016/0001-706X(94)00080-K PubMed DOI

Sudhaik A, Raizada P, Shandilya P, Jeong DY, Lim JH, Singh P (2018) Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J Ind Eng Chem 67:28–51. https://doi.org/10.1016/j.jiec.2018.07.007 DOI

Sukhumungoon P, Rattanachuay P, Hayeebilan F, Kantachote D (2013) Biodegradation of ethidium bromide by Bacillus thuringiensis isolated from soil. Afr J Microbiol Res 7:471–476. https://doi.org/10.5897/AJMR12.1642 DOI

Swami D, Pandit P (2013) Photocatalytic degradation of hazardous dye acridine orange using semiconductor titanium dioxide (TiO

Tokiran S, Maniyam MN, Yaacob NS, Ibrahim AL (2016) Decolourization of textile dyes by Malaysian Rhodococcus strains. Indian J Fundam Appl Life Sci 6:14–20

Tomchick R, Mandel HG (1964) Biochemical effects of ethidium bromide in micro-organisms. Microbiology 36(2):225–236

Tuma RS, Beaudet MP, Jin X, Jones LJ, Cheung CY, Yue S, Singer VL (1999) Characterization of SYBR gold nucleic acid gel stain: a dye optimized for use with 300-nm ultraviolet transilluminators. Anal Biochem 268:278–288. https://doi.org/10.1006/abio.1998.3067 PubMed DOI

Uera RB, Paz-Alberto AM, Sigua GC (2007) Phytoremediation potentials of selected tropical plants for ethidium bromide. Environ Sci Pollut Res Int 14(7):505–509 PubMed DOI

Upadhyay RS (2002) Microbial bioremediation of textile effluents. In Progress in Industrial Microbiology 36:331–348

Utsev JT, Iwar RT, Ifyalem KJ (2020) Adsorption of methylene blue from aqueous solution onto Delonix regia pod activated carbon: batch equilibrium isotherm, kinetic and thermodynamic studies. Agric Wastes 4:18–19

Wainwright M, Crossley KB (2002) Methylene blue-a therapeutic dye for all seasons Journal of chemotherapy, 14:431-443

Wang Z, Wang Y, Zhang W, Wang Z, Ma Y, Zhou X (2019) Fabrication of TiO DOI

Wenrich BR, Trumbo TA (2012) Interaction of nucleic acids with coomassie blue G-250 in the Bradford assay. Anal Biochem 428:93–95. https://doi.org/10.1016/j.ab.2012.06.014 PubMed DOI

Yan K, Wang H, Zhang X (2009) Biodegradation of crystal violet by low molecular mass fraction secreted by fungus. J Biosci Bioeng 108:421–424 PubMed DOI

Yatome C, Yamada S, Ogawa T, Matsui M (1993) Degradation of crystal violet by Nocardia corallina. Appl Microbiol Biotechnol 38:565–569 DOI

Zhu C, Feng Q, Ma H, Wu M, Wang D, Wang Z (2018) Effect of methylene blue on the properties and microbial community of anaerobic granular sludge. BioResources 13:6033–6046 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...