A numerical algorithm for modeling cellular rearrangements in tissue morphogenesis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35304570
PubMed Central
PMC8933555
DOI
10.1038/s42003-022-03174-6
PII: 10.1038/s42003-022-03174-6
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- biologické modely * MeSH
- epitel MeSH
- morfogeneze MeSH
- software MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Among morphological phenomena, cellular patterns in developing sensory epithelia have gained attention in recent years. Although physical models for cellular rearrangements are well-established thanks to a large bulk of experimental work, their computational implementation lacks solid mathematical background and involves experimentally unreachable parameters. Here we introduce a level set-based computational framework as a tool to rigorously investigate evolving cellular patterns, and study its mathematical and computational properties. We illustrate that a compelling feature of the method is its ability to correctly handle complex topology changes, including frequent cell intercalations. Combining this accurate numerical scheme with an established mathematical model, we show that the proposed framework features minimum possible number of parameters and is capable of reproducing a wide range of tissue morphological phenomena, such as cell sorting, engulfment or internalization. In particular, thanks to precise mathematical treatment of cellular intercalations, this method succeeds in simulating experimentally observed development of cellular mosaic patterns in sensory epithelia.
Department of Mathematics Graduate School of Science Kyoto University Kyoto Japan
Mathematical Institute Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Brodland GW. The differential interfacial tension hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J. Biomech. Eng. 2002;124:188–197. doi: 10.1115/1.1449491. PubMed DOI
Steinberg MS. Reconstruction of tissues by dissociated cells: Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science. 1963;141:401–408. doi: 10.1126/science.141.3579.401. PubMed DOI
Esedoḡlu S, Otto F. Threshold dynamics for networks with arbitrary surface tensions. Commun. Pure Appl. Math. 2015;68:808–864. doi: 10.1002/cpa.21527. DOI
Fletcher AG, Osborne JM, Maini PK, Gavaghan DJ. Implementing vertex dynamics models of cell populations in biology within a consistent computational framework. Prog. Biophysics Mol. Biol. 2013;113:299–326. doi: 10.1016/j.pbiomolbio.2013.09.003. PubMed DOI
Brodland GW. Computational modeling of cell sorting, tissue engulfment, and related phenomena: a review. Appl. Mech. Rev. 2004;57:47–76. doi: 10.1115/1.1583758. DOI
Katsunuma S, et al. Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium. J. Cell Biol. 2016;212:561–575. doi: 10.1083/jcb.201509020. PubMed DOI PMC
Laux T, Otto F. Convergence of the thresholding scheme for multi-phase mean-curvature flow. Calculus Var. Partial Differential Equ. 2016;55:129. doi: 10.1007/s00526-016-1053-0. DOI
Jacobs M, Merkurjev E, Esedoḡlu S. Auction dynamics: a volume constrained MBO scheme. J. Comput. Phys. 2018;354:288–310. doi: 10.1016/j.jcp.2017.10.036. DOI
Brodland GW, Chen HH. The mechanics of heterotypic cell aggregates: Insights from computer simulations. J. Biomech. Eng. 2000;122:402–407. doi: 10.1115/1.1288205. PubMed DOI
Mohammad, R. Z., Murakawa, H., Svadlenka, K. & Togashi, H. Supplementary movies for “A numerical algorithm for modeling cellular rearrangements in tissue morphogenesis”. 10.6084/m9.figshare.18070424. PubMed PMC
Togashi H. Differential and cooperative cell adhesion regulates cellular pattern in sensory epithelia. Front. Cell Dev. Biol. 2016;4:104. doi: 10.3389/fcell.2016.00104. PubMed DOI PMC
Togashi H, et al. Nectins establish a checkerboard-like cellular pattern in the auditory epithelium. Science. 2011;333:1144–1147. doi: 10.1126/science.1208467. PubMed DOI
Cohen R, et al. Mechanical forces drive ordered patterning of hair cells in the mammalian inner ear. Nat. Commun. 2020;11:5137. doi: 10.1038/s41467-020-18894-8. PubMed DOI PMC
Yamamoto N, Okano T, Ma X, Adelstein RS, Kelley MW. Myosin ii regulates extension, growth and patterning in the mammalian cochlear duct. Development. 2009;136:1977–1986. doi: 10.1242/dev.030718. PubMed DOI PMC
Morgan F. Lowersemicontinuity of energy clusters. Proc. R. Soc. Edinb.: Sect. A Math. 1997;127:819–822. doi: 10.1017/S0308210500023842. DOI
Bronsard L, Wetton BTR. A numerical method for tracking curve networks moving with curvature motion. J. Comput. Phys. 1995;120:66–87. doi: 10.1006/jcph.1995.1149. DOI
Merriman B, Bence JK, Osher SJ. Motion of multiple junctions: a level set approach. J. Comput. Phys. 1994;112:334–363. doi: 10.1006/jcph.1994.1105. DOI
Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988;79:12–49. doi: 10.1016/0021-9991(88)90002-2. DOI
Misiats O, Yip N. Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature. Discret. Continuous Dynamical Syst. - A. 2016;36:6379–6411. doi: 10.3934/dcds.2016076. DOI
Xu X, Wang D, Wang X-P. An efficient threshold dynamics method for wetting on rough surfaces. J. Comput. Phys. 2017;330:510–528. doi: 10.1016/j.jcp.2016.11.008. DOI
Laux T, Swartz D. Convergence of thresholding schemes incorporating bulk effects. Interfac. Free Boundaries. 2017;19:273–304. doi: 10.4171/IFB/383. DOI
Togashi H, et al. Cadherin regulates dendritic spine morphogenesis. Neuron. 2002;35:77–89. doi: 10.1016/S0896-6273(02)00748-1. PubMed DOI
Inagaki M, et al. Roles of cell-adhesion molecules nectin 1 and nectin 3 in ciliary body development. Development. 2005;132:1525–1537. doi: 10.1242/dev.01697. PubMed DOI
Mohammad, R. Z., Murakawa, H., Svadlenka, K. & Togashi, H. Supplementary data for “A numerical algorithm for modeling cellular rearrangements in tissue morphogenesis”. 10.6084/m9.figshare.18070421. PubMed PMC
figshare
10.6084/m9.figshare.18070421, 10.6084/m9.figshare.18070424