Multiple Sclerosis and Microbiome

. 2022 Mar 11 ; 12 (3) : . [epub] 20220311

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35327624

The composition of microbiota and the gut-brain axis is increasingly considered a factor in the development of various pathological conditions. The etiology of multiple sclerosis (MS), a chronic autoimmune disease affecting the CNS, is complex and interactions within the gut-brain axis may be relevant in the development and the course of MS. In this article, we focus on the relationship between gut microbiota and the pathophysiology of MS. We review the contribution of germ-free mouse studies to our understanding of MS pathology and its implications for treatment strategies to modulate the microbiome in MS. This summary highlights the need for a better understanding of the role of the microbiota in patients' responses to disease-modifying drugs in MS and disease activity overall.

Zobrazit více v PubMed

Sadovnick A.D., Armstrong H., Rice G.P., Bulman D., Hashimoto L., Paty D.W., Hashimoto S.A., Warren S., Hader W., Murray T.J., et al. A population-based study of multiple sclerosis in twins: Update. Ann. Neurol. 1993;33:281–285. doi: 10.1002/ana.410330309. PubMed DOI

Hollenbach J.A., Oksenberg J.R. The immunogenetics of multiple sclerosis: A comprehensive review. J. Autoimmun. 2015;64:13–25. doi: 10.1016/j.jaut.2015.06.010. PubMed DOI PMC

Bjornevik K., Cortese M., Healy B.C., Kuhle J., Mina M.J., Leng Y., Elledge S.J., Niebuhr D.W., Scher A.I., Munger K.L., et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375:296–301. doi: 10.1126/science.abj8222. PubMed DOI

Magliozzi R., Serafini B., Rosicarelli B., Chiappetta G., Veroni C., Reynolds R., Aloisi F. B-cell enrichment and Epstein-Barr virus infection in inflammatory cortical lesions in secondary progressive multiple sclerosis. J. Neuropathol. Exp. Neurol. 2013;72:29–41. doi: 10.1097/NEN.0b013e31827bfc62. PubMed DOI

Grigoriadis N., van Pesch V., Paradig M.S.G. A basic overview of multiple sclerosis immunopathology. Eur. J. Neurol. 2015;22((Suppl. S2)):3–13. doi: 10.1111/ene.12798. PubMed DOI

Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234. PubMed DOI PMC

Jumpstart Consortium Human Microbiome Project Data Generation Working Group Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS ONE. 2012;7:e39315. doi: 10.1371/journal.pone.0039315. PubMed DOI PMC

Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. PubMed DOI PMC

Mowat A.M., Agace W.W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 2014;14:667–685. doi: 10.1038/nri3738. PubMed DOI

Mueller S., Saunier K., Hanisch C., Norin E., Alm L., Midtvedt T., Cresci A., Silvi S., Orpianesi C., Verdenelli M.C., et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Appl. Environ. Microbiol. 2006;72:1027–1033. doi: 10.1128/AEM.72.2.1027-1033.2006. PubMed DOI PMC

Johnson C.L., Versalovic J. The human microbiome and its potential importance to pediatrics. Pediatrics. 2012;129:950–960. doi: 10.1542/peds.2011-2736. PubMed DOI PMC

Tlaskalova-Hogenova H., Stepankova R., Hudcovic T., Tuckova L., Cukrowska B., Lodinova-Zadnikova R., Kozakova H., Rossmann P., Bartova J., Sokol D., et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol. Lett. 2004;93:97–108. doi: 10.1016/j.imlet.2004.02.005. PubMed DOI

Belkaid Y., Hand T.W. Role of the microbiota in immunity and inflammation. Cell. 2014;157:121–141. doi: 10.1016/j.cell.2014.03.011. PubMed DOI PMC

Piovani D., Danese S., Peyrin-Biroulet L., Nikolopoulos G.K., Lytras T., Bonovas S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. Gastroenterology. 2019;157:647–659. doi: 10.1053/j.gastro.2019.04.016. PubMed DOI

Zarate-Blades C.R., Horai R., Caspi R.R. Regulation of Autoimmunity by the Microbiome. DNA Cell Biol. 2016;35:455–458. doi: 10.1089/dna.2016.3432. PubMed DOI PMC

Round J.L., Mazmanian S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009;9:313–323. doi: 10.1038/nri2515. PubMed DOI PMC

Palm N.W., de Zoete M.R., Flavell R.A. Immune-microbiota interactions in health and disease. Clin. Immunol. 2015;159:122–127. doi: 10.1016/j.clim.2015.05.014. PubMed DOI PMC

Hrncir T., Stepankova R., Kozakova H., Hudcovic T., Tlaskalova-Hogenova H. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: Studies in germ-free mice. BMC Immunol. 2008;9:65. doi: 10.1186/1471-2172-9-65. PubMed DOI PMC

Kim M., Kim C.H. Regulation of humoral immunity by gut microbial products. Gut Microbes. 2017;8:392–399. doi: 10.1080/19490976.2017.1299311. PubMed DOI PMC

Freedman S.N., Shahi S.K., Mangalam A.K. The “Gut Feeling”: Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics. 2018;15:109–125. doi: 10.1007/s13311-017-0588-x. PubMed DOI PMC

Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI

Laaker C., Hsu M., Fabry Z., Miller S.D., Karpus W.J. Experimental Autoimmune Encephalomyelitis in the Mouse. Curr. Protoc. 2021;1:e300. doi: 10.1002/cpz1.300. PubMed DOI

Westall F.C. Molecular mimicry or structural mimicry? Mol. Immunol. 2006;43:1062–1064. doi: 10.1016/j.molimm.2005.06.039. PubMed DOI

Kuhlmann T., Ludwin S., Prat A., Antel J., Bruck W., Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017;133:13–24. doi: 10.1007/s00401-016-1653-y. PubMed DOI

Srpova B., Uher T., Hrnciarova T., Barro C., Andelova M., Michalak Z., Vaneckova M., Krasensky J., Noskova L., Havrdova E.K., et al. Serum neurofilament light chain reflects inflammation-driven neurodegeneration and predicts delayed brain volume loss in early stage of multiple sclerosis. Mult. Scler. 2021;27:52–60. doi: 10.1177/1352458519901272. PubMed DOI

Bittner S., Oh J., Havrdova E.K., Tintore M., Zipp F. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain. 2021;144:2954–2963. doi: 10.1093/brain/awab241. PubMed DOI PMC

Bar-Or A., Pender M.P., Khanna R., Steinman L., Hartung H.P., Maniar T., Croze E., Aftab B.T., Giovannoni G., Joshi M.A. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol. Med. 2020;26:296–310. doi: 10.1016/j.molmed.2019.11.003. PubMed DOI PMC

Thorley-Lawson D.A. Epstein-Barr virus: Exploiting the immune system. Nat. Rev. Immunol. 2001;1:75–82. doi: 10.1038/35095584. PubMed DOI

Corcione A., Aloisi F., Serafini B., Capello E., Mancardi G.L., Pistoia V., Uccelli A. B-cell differentiation in the CNS of patients with multiple sclerosis. Autoimmun. Rev. 2005;4:549–554. doi: 10.1016/j.autrev.2005.04.012. PubMed DOI

Wekerle H. Brain Autoimmunity and Intestinal Microbiota: 100 Trillion Game Changers. Trends Immunol. 2017;38:483–497. doi: 10.1016/j.it.2017.03.008. PubMed DOI

Berer K., Gerdes L.A., Cekanaviciute E., Jia X., Xiao L., Xia Z., Liu C., Klotz L., Stauffer U., Baranzini S.E., et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl. Acad. Sci. USA. 2017;114:10719–10724. doi: 10.1073/pnas.1711233114. PubMed DOI PMC

Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., Cheng G., Yamasaki S., Saito T., Ohba Y., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–341. doi: 10.1126/science.1198469. PubMed DOI PMC

Wang Y., Yin Y., Chen X., Zhao Y., Wu Y., Li Y., Wang X., Chen H., Xiang C. Induction of Intestinal Th17 Cells by Flagellins From Segmented Filamentous Bacteria. Front. Immunol. 2019;10:2750. doi: 10.3389/fimmu.2019.02750. PubMed DOI PMC

Berer K., Mues M., Koutrolos M., Rasbi Z.A., Boziki M., Johner C., Wekerle H., Krishnamoorthy G. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479:538–541. doi: 10.1038/nature10554. PubMed DOI

Cekanaviciute E., Yoo B.B., Runia T.F., Debelius J.W., Singh S., Nelson C.A., Kanner R., Bencosme Y., Lee Y.K., Hauser S.L., et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. USA. 2017;114:10713–10718. doi: 10.1073/pnas.1711235114. PubMed DOI PMC

Probstel A.K., Baranzini S.E. The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the “MS Microbiome”. NeuroTherapeutics. 2018;15:126–134. doi: 10.1007/s13311-017-0587-y. PubMed DOI PMC

Bach J.F. Revisiting the Hygiene Hypothesis in the Context of Autoimmunity. Front. Immunol. 2020;11:615192. doi: 10.3389/fimmu.2020.615192. PubMed DOI PMC

Vatanen T., Kostic A.D., d’Hennezel E., Siljander H., Franzosa E.A., Yassour M., Kolde R., Vlamakis H., Arthur T.D., Hamalainen A.M., et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell. 2016;165:842–853. doi: 10.1016/j.cell.2016.04.007. PubMed DOI PMC

Wasko N.J., Nichols F., Clark R.B. Multiple sclerosis, the microbiome, TLR2, and the hygiene hypothesis. Autoimmun. Rev. 2020;19:102430. doi: 10.1016/j.autrev.2019.102430. PubMed DOI

Yacyshyn B., Meddings J., Sadowski D., Bowen-Yacyshyn M.B. Multiple sclerosis patients have peripheral blood CD45RO+ B cells and increased intestinal permeability. Dig. Dis. Sci. 1996;41:2493–2498. doi: 10.1007/BF02100148. PubMed DOI

Nouri M., Bredberg A., Westrom B., Lavasani S. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS ONE. 2014;9:e106335. doi: 10.1371/journal.pone.0106335. PubMed DOI PMC

Buscarinu M.C., Romano S., Mechelli R., Pizzolato Umeton R., Ferraldeschi M., Fornasiero A., Renie R., Cerasoli B., Morena E., Romano C., et al. Intestinal Permeability in Relapsing-Remitting Multiple Sclerosis. Neurotherapeutics. 2018;15:68–74. doi: 10.1007/s13311-017-0582-3. PubMed DOI PMC

Ochoa-Reparaz J., Mielcarz D.W., Ditrio L.E., Burroughs A.R., Foureau D.M., Haque-Begum S., Kasper L.H. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J. Immunol. 2009;183:6041–6050. doi: 10.4049/jimmunol.0900747. PubMed DOI

Colpitts S.L., Kasper E.J., Keever A., Liljenberg C., Kirby T., Magori K., Kasper L.H., Ochoa-Reparaz J. A bidirectional association between the gut microbiota and CNS disease in a biphasic murine model of multiple sclerosis. Gut Microbes. 2017;8:561–573. doi: 10.1080/19490976.2017.1353843. PubMed DOI PMC

Valizadeh S., Majdi Seghinsara A., Maleki Chollou K., Bahadori A., Abbaszadeh S., Taghdir M., Behniafar H., Riahi S.M. The efficacy of probiotics in experimental autoimmune encephalomyelitis (an animal model for MS): A systematic review and meta-analysis. Lett. Appl. Microbiol. 2021;73:408–417. doi: 10.1111/lam.13543. PubMed DOI

Mirashrafi S., Hejazi Taghanaki S.Z., Sarlak F., Moravejolahkami A.R., Hojjati Kermani M.A., Haratian M. Effect of probiotics supplementation on disease progression, depression, general health, and anthropometric measurements in relapsing-remitting multiple sclerosis patients: A systematic review and meta-analysis of clinical trials. Int. J. Clin. Pract. 2021;75:e14724. doi: 10.1111/ijcp.14724. PubMed DOI

Tankou S.K., Regev K., Healy B.C., Cox L.M., Tjon E., Kivisakk P., Vanande I.P., Cook S., Gandhi R., Glanz B., et al. Investigation of probiotics in multiple sclerosis. Mult. Scler. 2018;24:58–63. doi: 10.1177/1352458517737390. PubMed DOI

Peon A.N., Ledesma-Soto Y., Olguin J.E., Bautista-Donis M., Sciutto E., Terrazas L.I. Helminth Products Potently Modulate Experimental Autoimmune Encephalomyelitis by Downregulating Neuroinflammation and Promoting a Suppressive Microenvironment. Mediat. Inflamm. 2017;2017:8494572. doi: 10.1155/2017/8494572. PubMed DOI PMC

Correale J., Farez M. Association between parasite infection and immune responses in multiple sclerosis. Ann. Neurol. 2007;61:97–108. doi: 10.1002/ana.21067. PubMed DOI

Correale J., Farez M.F. The impact of parasite infections on the course of multiple sclerosis. J. Neuroimmunol. 2011;233:6–11. doi: 10.1016/j.jneuroim.2011.01.002. PubMed DOI

Fleming J.O., Isaak A., Lee J.E., Luzzio C.C., Carrithers M.D., Cook T.D., Field A.S., Boland J., Fabry Z. Probiotic helminth administration in relapsing-remitting multiple sclerosis: A phase 1 study. Mult. Scler. 2011;17:743–754. doi: 10.1177/1352458511398054. PubMed DOI PMC

Dixit A., Tanaka A., Greer J.M., Donnelly S. Novel Therapeutics for Multiple Sclerosis Designed by Parasitic Worms. Int. J. Mol. Sci. 2017;18:2141. doi: 10.3390/ijms18102141. PubMed DOI PMC

Allegretti J.R., Mullish B.H., Kelly C., Fischer M. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet. 2019;394:420–431. doi: 10.1016/S0140-6736(19)31266-8. PubMed DOI

Borody T.J., Brandt L.J., Paramsothy S. Therapeutic faecal microbiota transplantation: Current status and future developments. Curr. Opin. Gastroenterol. 2014;30:97–105. doi: 10.1097/MOG.0000000000000027. PubMed DOI PMC

Vendrik K.E.W., Ooijevaar R.E., de Jong P.R.C., Laman J.D., van Oosten B.W., van Hilten J.J., Ducarmon Q.R., Keller J.J., Kuijper E.J., Contarino M.F. Fecal Microbiota Transplantation in Neurological Disorders. Front. Cell Infect. Microbiol. 2020;10:98. doi: 10.3389/fcimb.2020.00098. PubMed DOI PMC

Tankou S.K., Regev K., Healy B.C., Tjon E., Laghi L., Cox L.M., Kivisakk P., Pierre I.V., Hrishikesh L., Gandhi R., et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann. Neurol. 2018;83:1147–1161. doi: 10.1002/ana.25244. PubMed DOI PMC

Jangi S., Gandhi R., Cox L.M., Li N., von Glehn F., Yan R., Patel B., Mazzola M.A., Liu S., Glanz B.L., et al. Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 2016;7:12015. doi: 10.1038/ncomms12015. PubMed DOI PMC

Cignarella F., Cantoni C., Ghezzi L., Salter A., Dorsett Y., Chen L., Phillips D., Weinstock G.M., Fontana L., Cross A.H., et al. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab. 2018;27:1222–1235. doi: 10.1016/j.cmet.2018.05.006. PubMed DOI PMC

Li K., Wei S., Hu L., Yin X., Mai Y., Jiang C., Peng X., Cao X., Huang Z., Zhou H., et al. Protection of Fecal Microbiota Transplantation in a Mouse Model of Multiple Sclerosis. Mediat. Inflamm. 2020;2020:2058272. doi: 10.1155/2020/2058272. PubMed DOI PMC

Engen P.A., Zaferiou A., Rasmussen H., Naqib A., Green S.J., Fogg L.F., Forsyth C.B., Raeisi S., Hamaker B., Keshavarzian A. Single-Arm, Non-randomized, Time Series, Single-Subject Study of Fecal Microbiota Transplantation in Multiple Sclerosis. Front. Neurol. 2020;11:978. doi: 10.3389/fneur.2020.00978. PubMed DOI PMC

Schepici G., Silvestro S., Bramanti P., Mazzon E. The Gut Microbiota in Multiple Sclerosis: An Overview of Clinical Trials. Cell Transplant. 2019;28:1507–1527. doi: 10.1177/0963689719873890. PubMed DOI PMC

Van Pamelen J., van Olst L., Budding A.E., Group B.I.A.S., de Vries H.E., Visser L.H. Alterations of Gut Microbiota and the Brain-Immune-Intestine Axis in Patients with Relapsing-Remitting Multiple Sclerosis After Treatment With Oral Cladribine: Protocol for a Prospective Observational Study. JMIR Res. Protoc. 2020;9:e16162. doi: 10.2196/16162. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...