Oxidative Stress and Antioxidant Response in Populations of the Czech Republic Exposed to Various Levels of Environmental Pollutants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35329296
PubMed Central
PMC8955578
DOI
10.3390/ijerph19063609
PII: ijerph19063609
Knihovny.cz E-zdroje
- Klíčová slova
- DNA, POPs, antioxidant response, environmental factors, lipids, oxidative damage,
- MeSH
- antioxidancia analýza MeSH
- biologické markery MeSH
- DNA MeSH
- interleukin-6 MeSH
- látky znečišťující vzduch * analýza toxicita MeSH
- látky znečišťující životní prostředí * analýza toxicita MeSH
- lidé MeSH
- oxidační stres MeSH
- pevné částice analýza MeSH
- polycyklické aromatické uhlovodíky * analýza toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- antioxidancia MeSH
- biologické markery MeSH
- DNA MeSH
- interleukin-6 MeSH
- látky znečišťující vzduch * MeSH
- látky znečišťující životní prostředí * MeSH
- pevné částice MeSH
- polycyklické aromatické uhlovodíky * MeSH
We aimed to identify the variables that modify levels of oxidatively damaged DNA and lipid peroxidation in subjects living in diverse localities of the Czech Republic (a rural area, a metropolitan locality, and an industrial region). The sampling of a total of 126 policemen was conducted twice in two sampling seasons. Personal characteristics, concentrations of particulate matter of aerodynamic diameter <2.5 µm and benzo[a]pyrene in the ambient air, activities of antioxidant mechanisms (superoxide dismutase, catalase, glutathione peroxidase, and antioxidant capacity), levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), concentrations of persistent organic pollutants in blood plasma, and urinary levels of polycyclic aromatic hydrocarbon metabolites were investigated as parameters potentially affecting the markers of DNA oxidation (8-oxo-7,8-dihydro-2′-deoxyguanosine) and lipid peroxidation (15-F2t-isoprostane). The levels of oxidative stress markers mostly differed between the localities in the individual sampling seasons. Multivariate linear regression analysis revealed IL-6, a pro-inflammatory cytokine, as a factor with the most pronounced effects on oxidative stress parameters. The role of other variables, including environmental pollutants, was minor. In conclusion, our study showed that oxidative damage to macromolecules was affected by processes related to inflammation; however, we did not identify a specific environmental factor responsible for the pro-inflammatory response in the organism.
Zobrazit více v PubMed
Verhoeven J.I., Allach Y., Vaartjes I.C.H., Klijn C.J.M., de Leeuw F.-E. Ambient Air Pollution and the Risk of Ischaemic and Haemorrhagic Stroke. Lancet Planet. Health. 2021;5:e542–e552. doi: 10.1016/S2542-5196(21)00145-5. PubMed DOI
Bălă G.-P., Râjnoveanu R.-M., Tudorache E., Motișan R., Oancea C. Air Pollution Exposure—the (in)Visible Risk Factor for Respiratory Diseases. Environ. Sci. Pollut. Res. 2021;28:19615–19628. doi: 10.1007/s11356-021-13208-x. PubMed DOI PMC
Zhang Y., Liu D., Liu Z. Fine Particulate Matter (PM2.5) and Chronic Kidney Disease. In: de Voogt P., editor. Reviews of Environmental Contamination and Toxicology Volume 254. Volume 254. Springer International Publishing; Cham, Switzerland: 2021. pp. 183–215. Reviews of Environmental Contamination and Toxicology. PubMed
Shabani S. A Mechanistic View on the Neurotoxic Effects of Air Pollution on Central Nervous System: Risk for Autism and Neurodegenerative Diseases. Environ. Sci. Pollut. Res. 2021;28:6349–6373. doi: 10.1007/s11356-020-11620-3. PubMed DOI
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans . Outdoor Air Pollution. International Agency for Research on Cancer; Lyon, France: 2015.
Dominski F.H., Lorenzetti Branco J.H., Buonanno G., Stabile L., Gameiro da Silva M., Andrade A. Effects of Air Pollution on Health: A Mapping Review of Systematic Reviews and Meta-Analyses. Environ. Res. 2021;201:111487. doi: 10.1016/j.envres.2021.111487. PubMed DOI
Hinds W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 2nd ed. Wiley; New York, NY, USA: 1999.
Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005;113:823–839. doi: 10.1289/ehp.7339. PubMed DOI PMC
Valavanidis A., Vlachogianni T., Fiotakis K., Loridas S. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms. Int. J. Environ. Res. Public Health. 2013;10:3886–3907. doi: 10.3390/ijerph10093886. PubMed DOI PMC
Gangwar R.S., Bevan G.H., Palanivel R., Das L., Rajagopalan S. Oxidative Stress Pathways of Air Pollution Mediated Toxicity: Recent Insights. Redox Biol. 2020;34:101545. doi: 10.1016/j.redox.2020.101545. PubMed DOI PMC
IARC . Chemical Agents and Related Occupations. Volume 100 F IARC Publications; Lyon, France: 2012. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. PubMed PMC
Moorthy B., Chu C., Carlin D.J. Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer. Toxicol. Sci. 2015;145:5–15. doi: 10.1093/toxsci/kfv040. PubMed DOI PMC
Liu J., Tan Y., Song E., Song Y. A Critical Review of Polychlorinated Biphenyls Metabolism, Metabolites, and Their Correlation with Oxidative Stress. Chem. Res. Toxicol. 2020;33:2022–2042. doi: 10.1021/acs.chemrestox.0c00078. PubMed DOI
Nel A. Air Pollution-Related Illness: Effects of Particles. Science. 2005;308:804–806. doi: 10.1126/science.1108752. PubMed DOI
Pisoschi A.M., Pop A. The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. Eur. J. Med. Chem. 2015;97:55–74. doi: 10.1016/j.ejmech.2015.04.040. PubMed DOI
Leni Z., Künzi L., Geiser M. Air Pollution Causing Oxidative Stress. Curr. Opin. Toxicol. 2020;20–21:1–8. doi: 10.1016/j.cotox.2020.02.006. DOI
Arias-Pérez R.D., Taborda N.A., Gómez D.M., Narvaez J.F., Porras J., Hernandez J.C. Inflammatory Effects of Particulate Matter Air Pollution. Environ. Sci. Pollut. Res. 2020;27:42390–42404. doi: 10.1007/s11356-020-10574-w. PubMed DOI
Poulsen H.E., Nadal L.L., Broedbaek K., Nielsen P.E., Weimann A. Detection and Interpretation of 8-OxodG and 8-OxoGua in Urine, Plasma and Cerebrospinal Fluid. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2014;1840:801–808. doi: 10.1016/j.bbagen.2013.06.009. PubMed DOI
Chao M.-R., Evans M.D., Hu C.-W., Ji Y., Møller P., Rossner P., Cooke M.S. Biomarkers of Nucleic Acid Oxidation—A Summary State-of-the-Art. Redox Biol. 2021;42:101872. doi: 10.1016/j.redox.2021.101872. PubMed DOI PMC
Ramana K.V., Srivastava S., Singhal S.S. Lipid Peroxidation Products in Human Health and Disease 2014. Oxidative Med. Cell. Longev. 2014;2014:162414. doi: 10.1155/2014/162414. PubMed DOI PMC
Morrow J.D., Hill K.E., Burk R.F., Nammour T.M., Badr K.F., Roberts L.J. A Series of Prostaglandin F2-like Compounds Are Produced in Vivo in Humans by a Non-Cyclooxygenase, Free Radical-Catalyzed Mechanism. Proc. Natl. Acad. Sci. USA. 1990;87:9383–9387. doi: 10.1073/pnas.87.23.9383. PubMed DOI PMC
Morrow J.D., Awad J.A., Boss H.J., Blair I.A., Roberts L.J. Non-Cyclooxygenase-Derived Postanoids (F2-Isoprostanes) Are Formed in Situ on Phospholipids. Proc. Natl. Acad. Sci. USA. 1992;89:10721–10725. doi: 10.1073/pnas.89.22.10721. PubMed DOI PMC
Lee Y.Y., Galano J.-M., Oger C., Vigor C., Guillaume R., Roy J., Le Guennec J.-Y., Durand T., Lee J.C.-Y. Assessment of Isoprostanes in Human Plasma: Technical Considerations and the Use of Mass Spectrometry. Lipids. 2016;51:1217–1229. doi: 10.1007/s11745-016-4198-x. PubMed DOI
Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging. 2018;13:757–772. doi: 10.2147/CIA.S158513. PubMed DOI PMC
Rossner P., Jr., Svecova V., Schmuczerova J., Milcova A., Tabashidze N., Topinka J., Pastorkova A., Sram R.J. Analysis of Biomarkers in a Czech Population Exposed to Heavy Air Pollution. Part I: Bulky DNA Adducts. Mutagenesis. 2013;28:89–95. doi: 10.1093/mutage/ges057. PubMed DOI
Topinka J., Rossner P., Jr., Milcova A., Schmuczerova J., Svecova V., Sram R.J. DNA Adducts and Oxidative DNA Damage Induced by Organic Extracts from PM2.5 in an Acellular Assay. Toxicol. Lett. 2011;202:186–192. doi: 10.1016/j.toxlet.2011.02.005. PubMed DOI
Polachova A., Gramblicka T., Bechynska K., Parizek O., Parizkova D., Dvorakova D., Honkova K., Rossnerova A., Rossner P., Sram R.J., et al. Biomonitoring of 89 POPs in Blood Serum Samples of Czech City Policemen. Environ. Pollut. 2021;291:118140. doi: 10.1016/j.envpol.2021.118140. PubMed DOI
Langone J.J., Van V.H. Radioimmunoassay of Nicotine, Cotinine, and Gamma-(3-Pyridyl)-Gamma-Oxo-N-Methylbutyramide. Methods Enzymol. 1982;84:628–640. PubMed
Delanghe J.R., Speeckaert M.M. Creatinine Determination According to Jaffe--What Does It Stand For? Clin. Kidney J. 2011;4:83–86. doi: 10.1093/ndtplus/sfq211. PubMed DOI PMC
Rossner P., Jr., Mistry V., Singh R., Sram R.J., Cooke M.S. Urinary 8-Oxo-7,8-Dihydro-2’-Deoxyguanosine Values Determined by a Modified ELISA Improves Agreement with HPLC-MS/MS. Biochem. Biophys Res. Commun. 2013;440:725–730. doi: 10.1016/j.bbrc.2013.09.133. PubMed DOI
Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practival and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Cao W., Wang X., Li J., Yan M., Chang C.H., Kim J., Jiang J., Liao Y.-P., Tseng S., Kusumoputro S., et al. NLRP3 Inflammasome Activation Determines the Fibrogenic Potential of PM2.5 Air Pollution Particles in the Lung. J. Environ. Sci. 2022;111:429–441. doi: 10.1016/j.jes.2021.04.021. PubMed DOI
Francenia Santos-Sánchez N., Salas-Coronado R., Villanueva-Cañongo C., Hernández-Carlos B. Antioxidant Compounds and Their Antioxidant Mechanism. In: Shalaby E., editor. Antioxidants. IntechOpen; London, UK: 2019. [(accessed on 15 March 2022)]. Available online: https://www.intechopen.com/
Ali S.S., Ahsan H., Zia M.K., Siddiqui T., Khan F.H. Understanding Oxidants and Antioxidants: Classical Team with New Players. J. Food Biochem. 2020;44:e13145. doi: 10.1111/jfbc.13145. PubMed DOI
Brucker N., Moro A.M., Charão M.F., Durgante J., Freitas F., Baierle M., Nascimento S., Gauer B., Bulcão R.P., Bubols G.B., et al. Biomarkers of Occupational Exposure to Air Pollution, Inflammation and Oxidative Damage in Taxi Drivers. Sci. Total Environ. 2013;463–464:884–893. doi: 10.1016/j.scitotenv.2013.06.098. PubMed DOI
Kumar J., Monica Lind P., Salihovic S., van Bavel B., Lind L., Ingelsson E. Influence of Persistent Organic Pollutants on Oxidative Stress in Population-Based Samples. Chemosphere. 2014;114:303–309. doi: 10.1016/j.chemosphere.2014.05.013. PubMed DOI
Kurutas E.B. The Importance of Antioxidants Which Play the Role in Cellular Response against Oxidative/Nitrosative Stress: Current State. Nutr. J. 2015;15:71. doi: 10.1186/s12937-016-0186-5. PubMed DOI PMC
Liou S.-H., Chen Y.-C., Liao H.-Y., Wang C.-J., Chen J.-S., Lee H.-L. Increased Levels of Oxidative Stress Biomarkers in Metal Oxides Nanomaterial-Handling Workers. Biomarkers. 2016;21:600–606. doi: 10.3109/1354750X.2016.1160432. PubMed DOI
Dziubla T., Butterfield D.A. Oxidative Stress and Biomaterials. Academic Press; Elsevier; Amsterdam, The Netherlands: 2016.
Cao L., Zhou Y., Tan A., Shi T., Zhu C., Xiao L., Zhang Z., Yang S., Mu G., Wang X., et al. Oxidative Damage Mediates the Association between Polycyclic Aromatic Hydrocarbon Exposure and Lung Function. Environ. Health. 2020;19:75. doi: 10.1186/s12940-020-00621-x. PubMed DOI PMC
Feng S., Gao D., Liao F., Zhou F., Wang X. The Health Effects of Ambient PM2.5 and Potential Mechanisms. Ecotoxicol. Environ. Saf. 2016;128:67–74. doi: 10.1016/j.ecoenv.2016.01.030. PubMed DOI
Rossner P., Jr., Rossnerova A., Spatova M., Beskid O., Uhlirova K., Libalova H., Solansky I., Topinka J., Sram R.J. Analysis of Biomarkers in a Czech Population Exposed to Heavy Air Pollution. Part II: Chromosomal Aberrations and Oxidative Stress. Mutagenesis. 2013;28:97–106. doi: 10.1093/mutage/ges058. PubMed DOI
Rossner P., Jr., Uhlirova K., Beskid O., Rossnerova A., Svecova V., Sram R.J. Expression of XRCC5 in Peripheral Blood Lymphocytes Is Upregulated in Subjects from a Heavily Polluted Region in the Czech Republic. Mutat. Res. 2011;713:76–82. doi: 10.1016/j.mrfmmm.2011.06.001. PubMed DOI
Vogel C.F.A., Van Winkle L.S., Esser C., Haarmann-Stemmann T. The Aryl Hydrocarbon Receptor as a Target of Environmental Stressors—Implications for Pollution Mediated Stress and Inflammatory Responses. Redox Biol. 2020;34:101530. doi: 10.1016/j.redox.2020.101530. PubMed DOI PMC
Li Y., Chen L., Ngoc D.M., Duan Y.-P., Lu Z.-B., Wen Z.-H., Meng X.-Z. Polybrominated Diphenyl Ethers (PBDEs) in PM2.5, PM10, TSP and Gas Phase in Office Environment in Shanghai, China: Occurrence and Human Exposure. PLoS ONE. 2015;10:e0119144. doi: 10.1371/journal.pone.0119144. PubMed DOI PMC
Genisoglu M., Sofuoglu A., Kurt-Karakus P.B., Birgul A., Sofuoglu S.C. Brominated Flame Retardants in a Computer Technical Service: Indoor Air Gas Phase, Submicron (PM1) and Coarse (PM10) Particles, Associated Inhalation Exposure, and Settled Dust. Chemosphere. 2019;231:216–224. doi: 10.1016/j.chemosphere.2019.05.077. PubMed DOI
Park W.-H., Jun D.W., Kim J.T., Jeong J.H., Park H., Chang Y.-S., Park K.S., Lee H.K., Pak Y.K. Novel Cell-Based Assay Reveals Associations of Circulating Serum AhR-Ligands with Metabolic Syndrome and Mitochondrial Dysfunction: High Serum Dioxins in Metabolic Syndrome. BioFactors. 2013;39:494–504. doi: 10.1002/biof.1092. PubMed DOI
Peters A.K., Nijmeijer S., Gradin K., Backlund M., Bergman Å., Poellinger L., Denison M.S., Van den Berg M. Interactions of Polybrominated Diphenyl Ethers with the Aryl Hydrocarbon Receptor Pathway. Toxicol. Sci. 2006;92:133–142. doi: 10.1093/toxsci/kfj186. PubMed DOI PMC
Rogge M.M. The Role of Impaired Mitochondrial Lipid Oxidation in Obesity. Biol. Res. For. Nurs. 2009;10:356–373. doi: 10.1177/1099800408329408. PubMed DOI