Oxidative Stress and Antioxidant Response in Populations of the Czech Republic Exposed to Various Levels of Environmental Pollutants

. 2022 Mar 18 ; 19 (6) : . [epub] 20220318

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35329296

We aimed to identify the variables that modify levels of oxidatively damaged DNA and lipid peroxidation in subjects living in diverse localities of the Czech Republic (a rural area, a metropolitan locality, and an industrial region). The sampling of a total of 126 policemen was conducted twice in two sampling seasons. Personal characteristics, concentrations of particulate matter of aerodynamic diameter <2.5 µm and benzo[a]pyrene in the ambient air, activities of antioxidant mechanisms (superoxide dismutase, catalase, glutathione peroxidase, and antioxidant capacity), levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), concentrations of persistent organic pollutants in blood plasma, and urinary levels of polycyclic aromatic hydrocarbon metabolites were investigated as parameters potentially affecting the markers of DNA oxidation (8-oxo-7,8-dihydro-2′-deoxyguanosine) and lipid peroxidation (15-F2t-isoprostane). The levels of oxidative stress markers mostly differed between the localities in the individual sampling seasons. Multivariate linear regression analysis revealed IL-6, a pro-inflammatory cytokine, as a factor with the most pronounced effects on oxidative stress parameters. The role of other variables, including environmental pollutants, was minor. In conclusion, our study showed that oxidative damage to macromolecules was affected by processes related to inflammation; however, we did not identify a specific environmental factor responsible for the pro-inflammatory response in the organism.

Zobrazit více v PubMed

Verhoeven J.I., Allach Y., Vaartjes I.C.H., Klijn C.J.M., de Leeuw F.-E. Ambient Air Pollution and the Risk of Ischaemic and Haemorrhagic Stroke. Lancet Planet. Health. 2021;5:e542–e552. doi: 10.1016/S2542-5196(21)00145-5. PubMed DOI

Bălă G.-P., Râjnoveanu R.-M., Tudorache E., Motișan R., Oancea C. Air Pollution Exposure—the (in)Visible Risk Factor for Respiratory Diseases. Environ. Sci. Pollut. Res. 2021;28:19615–19628. doi: 10.1007/s11356-021-13208-x. PubMed DOI PMC

Zhang Y., Liu D., Liu Z. Fine Particulate Matter (PM2.5) and Chronic Kidney Disease. In: de Voogt P., editor. Reviews of Environmental Contamination and Toxicology Volume 254. Volume 254. Springer International Publishing; Cham, Switzerland: 2021. pp. 183–215. Reviews of Environmental Contamination and Toxicology. PubMed

Shabani S. A Mechanistic View on the Neurotoxic Effects of Air Pollution on Central Nervous System: Risk for Autism and Neurodegenerative Diseases. Environ. Sci. Pollut. Res. 2021;28:6349–6373. doi: 10.1007/s11356-020-11620-3. PubMed DOI

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans . Outdoor Air Pollution. International Agency for Research on Cancer; Lyon, France: 2015.

Dominski F.H., Lorenzetti Branco J.H., Buonanno G., Stabile L., Gameiro da Silva M., Andrade A. Effects of Air Pollution on Health: A Mapping Review of Systematic Reviews and Meta-Analyses. Environ. Res. 2021;201:111487. doi: 10.1016/j.envres.2021.111487. PubMed DOI

Hinds W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 2nd ed. Wiley; New York, NY, USA: 1999.

Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005;113:823–839. doi: 10.1289/ehp.7339. PubMed DOI PMC

Valavanidis A., Vlachogianni T., Fiotakis K., Loridas S. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms. Int. J. Environ. Res. Public Health. 2013;10:3886–3907. doi: 10.3390/ijerph10093886. PubMed DOI PMC

Gangwar R.S., Bevan G.H., Palanivel R., Das L., Rajagopalan S. Oxidative Stress Pathways of Air Pollution Mediated Toxicity: Recent Insights. Redox Biol. 2020;34:101545. doi: 10.1016/j.redox.2020.101545. PubMed DOI PMC

IARC . Chemical Agents and Related Occupations. Volume 100 F IARC Publications; Lyon, France: 2012. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. PubMed PMC

Moorthy B., Chu C., Carlin D.J. Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer. Toxicol. Sci. 2015;145:5–15. doi: 10.1093/toxsci/kfv040. PubMed DOI PMC

Liu J., Tan Y., Song E., Song Y. A Critical Review of Polychlorinated Biphenyls Metabolism, Metabolites, and Their Correlation with Oxidative Stress. Chem. Res. Toxicol. 2020;33:2022–2042. doi: 10.1021/acs.chemrestox.0c00078. PubMed DOI

Nel A. Air Pollution-Related Illness: Effects of Particles. Science. 2005;308:804–806. doi: 10.1126/science.1108752. PubMed DOI

Pisoschi A.M., Pop A. The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. Eur. J. Med. Chem. 2015;97:55–74. doi: 10.1016/j.ejmech.2015.04.040. PubMed DOI

Leni Z., Künzi L., Geiser M. Air Pollution Causing Oxidative Stress. Curr. Opin. Toxicol. 2020;20–21:1–8. doi: 10.1016/j.cotox.2020.02.006. DOI

Arias-Pérez R.D., Taborda N.A., Gómez D.M., Narvaez J.F., Porras J., Hernandez J.C. Inflammatory Effects of Particulate Matter Air Pollution. Environ. Sci. Pollut. Res. 2020;27:42390–42404. doi: 10.1007/s11356-020-10574-w. PubMed DOI

Poulsen H.E., Nadal L.L., Broedbaek K., Nielsen P.E., Weimann A. Detection and Interpretation of 8-OxodG and 8-OxoGua in Urine, Plasma and Cerebrospinal Fluid. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2014;1840:801–808. doi: 10.1016/j.bbagen.2013.06.009. PubMed DOI

Chao M.-R., Evans M.D., Hu C.-W., Ji Y., Møller P., Rossner P., Cooke M.S. Biomarkers of Nucleic Acid Oxidation—A Summary State-of-the-Art. Redox Biol. 2021;42:101872. doi: 10.1016/j.redox.2021.101872. PubMed DOI PMC

Ramana K.V., Srivastava S., Singhal S.S. Lipid Peroxidation Products in Human Health and Disease 2014. Oxidative Med. Cell. Longev. 2014;2014:162414. doi: 10.1155/2014/162414. PubMed DOI PMC

Morrow J.D., Hill K.E., Burk R.F., Nammour T.M., Badr K.F., Roberts L.J. A Series of Prostaglandin F2-like Compounds Are Produced in Vivo in Humans by a Non-Cyclooxygenase, Free Radical-Catalyzed Mechanism. Proc. Natl. Acad. Sci. USA. 1990;87:9383–9387. doi: 10.1073/pnas.87.23.9383. PubMed DOI PMC

Morrow J.D., Awad J.A., Boss H.J., Blair I.A., Roberts L.J. Non-Cyclooxygenase-Derived Postanoids (F2-Isoprostanes) Are Formed in Situ on Phospholipids. Proc. Natl. Acad. Sci. USA. 1992;89:10721–10725. doi: 10.1073/pnas.89.22.10721. PubMed DOI PMC

Lee Y.Y., Galano J.-M., Oger C., Vigor C., Guillaume R., Roy J., Le Guennec J.-Y., Durand T., Lee J.C.-Y. Assessment of Isoprostanes in Human Plasma: Technical Considerations and the Use of Mass Spectrometry. Lipids. 2016;51:1217–1229. doi: 10.1007/s11745-016-4198-x. PubMed DOI

Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging. 2018;13:757–772. doi: 10.2147/CIA.S158513. PubMed DOI PMC

Rossner P., Jr., Svecova V., Schmuczerova J., Milcova A., Tabashidze N., Topinka J., Pastorkova A., Sram R.J. Analysis of Biomarkers in a Czech Population Exposed to Heavy Air Pollution. Part I: Bulky DNA Adducts. Mutagenesis. 2013;28:89–95. doi: 10.1093/mutage/ges057. PubMed DOI

Topinka J., Rossner P., Jr., Milcova A., Schmuczerova J., Svecova V., Sram R.J. DNA Adducts and Oxidative DNA Damage Induced by Organic Extracts from PM2.5 in an Acellular Assay. Toxicol. Lett. 2011;202:186–192. doi: 10.1016/j.toxlet.2011.02.005. PubMed DOI

Polachova A., Gramblicka T., Bechynska K., Parizek O., Parizkova D., Dvorakova D., Honkova K., Rossnerova A., Rossner P., Sram R.J., et al. Biomonitoring of 89 POPs in Blood Serum Samples of Czech City Policemen. Environ. Pollut. 2021;291:118140. doi: 10.1016/j.envpol.2021.118140. PubMed DOI

Langone J.J., Van V.H. Radioimmunoassay of Nicotine, Cotinine, and Gamma-(3-Pyridyl)-Gamma-Oxo-N-Methylbutyramide. Methods Enzymol. 1982;84:628–640. PubMed

Delanghe J.R., Speeckaert M.M. Creatinine Determination According to Jaffe--What Does It Stand For? Clin. Kidney J. 2011;4:83–86. doi: 10.1093/ndtplus/sfq211. PubMed DOI PMC

Rossner P., Jr., Mistry V., Singh R., Sram R.J., Cooke M.S. Urinary 8-Oxo-7,8-Dihydro-2’-Deoxyguanosine Values Determined by a Modified ELISA Improves Agreement with HPLC-MS/MS. Biochem. Biophys Res. Commun. 2013;440:725–730. doi: 10.1016/j.bbrc.2013.09.133. PubMed DOI

Benjamini Y., Hochberg Y. Controlling the False Discovery Rate: A Practival and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Cao W., Wang X., Li J., Yan M., Chang C.H., Kim J., Jiang J., Liao Y.-P., Tseng S., Kusumoputro S., et al. NLRP3 Inflammasome Activation Determines the Fibrogenic Potential of PM2.5 Air Pollution Particles in the Lung. J. Environ. Sci. 2022;111:429–441. doi: 10.1016/j.jes.2021.04.021. PubMed DOI

Francenia Santos-Sánchez N., Salas-Coronado R., Villanueva-Cañongo C., Hernández-Carlos B. Antioxidant Compounds and Their Antioxidant Mechanism. In: Shalaby E., editor. Antioxidants. IntechOpen; London, UK: 2019. [(accessed on 15 March 2022)]. Available online: https://www.intechopen.com/

Ali S.S., Ahsan H., Zia M.K., Siddiqui T., Khan F.H. Understanding Oxidants and Antioxidants: Classical Team with New Players. J. Food Biochem. 2020;44:e13145. doi: 10.1111/jfbc.13145. PubMed DOI

Brucker N., Moro A.M., Charão M.F., Durgante J., Freitas F., Baierle M., Nascimento S., Gauer B., Bulcão R.P., Bubols G.B., et al. Biomarkers of Occupational Exposure to Air Pollution, Inflammation and Oxidative Damage in Taxi Drivers. Sci. Total Environ. 2013;463–464:884–893. doi: 10.1016/j.scitotenv.2013.06.098. PubMed DOI

Kumar J., Monica Lind P., Salihovic S., van Bavel B., Lind L., Ingelsson E. Influence of Persistent Organic Pollutants on Oxidative Stress in Population-Based Samples. Chemosphere. 2014;114:303–309. doi: 10.1016/j.chemosphere.2014.05.013. PubMed DOI

Kurutas E.B. The Importance of Antioxidants Which Play the Role in Cellular Response against Oxidative/Nitrosative Stress: Current State. Nutr. J. 2015;15:71. doi: 10.1186/s12937-016-0186-5. PubMed DOI PMC

Liou S.-H., Chen Y.-C., Liao H.-Y., Wang C.-J., Chen J.-S., Lee H.-L. Increased Levels of Oxidative Stress Biomarkers in Metal Oxides Nanomaterial-Handling Workers. Biomarkers. 2016;21:600–606. doi: 10.3109/1354750X.2016.1160432. PubMed DOI

Dziubla T., Butterfield D.A. Oxidative Stress and Biomaterials. Academic Press; Elsevier; Amsterdam, The Netherlands: 2016.

Cao L., Zhou Y., Tan A., Shi T., Zhu C., Xiao L., Zhang Z., Yang S., Mu G., Wang X., et al. Oxidative Damage Mediates the Association between Polycyclic Aromatic Hydrocarbon Exposure and Lung Function. Environ. Health. 2020;19:75. doi: 10.1186/s12940-020-00621-x. PubMed DOI PMC

Feng S., Gao D., Liao F., Zhou F., Wang X. The Health Effects of Ambient PM2.5 and Potential Mechanisms. Ecotoxicol. Environ. Saf. 2016;128:67–74. doi: 10.1016/j.ecoenv.2016.01.030. PubMed DOI

Rossner P., Jr., Rossnerova A., Spatova M., Beskid O., Uhlirova K., Libalova H., Solansky I., Topinka J., Sram R.J. Analysis of Biomarkers in a Czech Population Exposed to Heavy Air Pollution. Part II: Chromosomal Aberrations and Oxidative Stress. Mutagenesis. 2013;28:97–106. doi: 10.1093/mutage/ges058. PubMed DOI

Rossner P., Jr., Uhlirova K., Beskid O., Rossnerova A., Svecova V., Sram R.J. Expression of XRCC5 in Peripheral Blood Lymphocytes Is Upregulated in Subjects from a Heavily Polluted Region in the Czech Republic. Mutat. Res. 2011;713:76–82. doi: 10.1016/j.mrfmmm.2011.06.001. PubMed DOI

Vogel C.F.A., Van Winkle L.S., Esser C., Haarmann-Stemmann T. The Aryl Hydrocarbon Receptor as a Target of Environmental Stressors—Implications for Pollution Mediated Stress and Inflammatory Responses. Redox Biol. 2020;34:101530. doi: 10.1016/j.redox.2020.101530. PubMed DOI PMC

Li Y., Chen L., Ngoc D.M., Duan Y.-P., Lu Z.-B., Wen Z.-H., Meng X.-Z. Polybrominated Diphenyl Ethers (PBDEs) in PM2.5, PM10, TSP and Gas Phase in Office Environment in Shanghai, China: Occurrence and Human Exposure. PLoS ONE. 2015;10:e0119144. doi: 10.1371/journal.pone.0119144. PubMed DOI PMC

Genisoglu M., Sofuoglu A., Kurt-Karakus P.B., Birgul A., Sofuoglu S.C. Brominated Flame Retardants in a Computer Technical Service: Indoor Air Gas Phase, Submicron (PM1) and Coarse (PM10) Particles, Associated Inhalation Exposure, and Settled Dust. Chemosphere. 2019;231:216–224. doi: 10.1016/j.chemosphere.2019.05.077. PubMed DOI

Park W.-H., Jun D.W., Kim J.T., Jeong J.H., Park H., Chang Y.-S., Park K.S., Lee H.K., Pak Y.K. Novel Cell-Based Assay Reveals Associations of Circulating Serum AhR-Ligands with Metabolic Syndrome and Mitochondrial Dysfunction: High Serum Dioxins in Metabolic Syndrome. BioFactors. 2013;39:494–504. doi: 10.1002/biof.1092. PubMed DOI

Peters A.K., Nijmeijer S., Gradin K., Backlund M., Bergman Å., Poellinger L., Denison M.S., Van den Berg M. Interactions of Polybrominated Diphenyl Ethers with the Aryl Hydrocarbon Receptor Pathway. Toxicol. Sci. 2006;92:133–142. doi: 10.1093/toxsci/kfj186. PubMed DOI PMC

Rogge M.M. The Role of Impaired Mitochondrial Lipid Oxidation in Obesity. Biol. Res. For. Nurs. 2009;10:356–373. doi: 10.1177/1099800408329408. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...