Effects of Secondary Porosity on Microstructure and Mechanical Properties of SAP-Containing Lime-Based Plasters
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-00420S
Czech Science Foundation
PubMed
35335493
PubMed Central
PMC8948981
DOI
10.3390/polym14061162
PII: polym14061162
Knihovny.cz E-zdroje
- Klíčová slova
- affected zone, lime-based plaster, mechanical strength, microstructure, secondary porosity, superabsorbent polymer,
- Publikační typ
- časopisecké články MeSH
Despite the many benefits associated with the utilization of superabsorbent polymers (SAPs), several drawbacks have been reported. In particular, the effect of SAPs on microstructure, together with its consequences for mechanical properties, is not fully understood yet for some composite materials. This study analyzes the role of SAPs in the formation of the microstructure of lime composites, taking into account their chemical composition. The obtained experimental results show that the particle size and cross-linking density of used SAPs are crucial parameters affecting both the microstructure and mechanical performance of the analyzed composites. Coarser SAPs with low cross-linking density in the dosage of 0.5 and 1 wt.% are found as the most suitable solution, leading even to a slight improvement of mechanical parameters. The secondary porosity formed by swelled hydrogels is identified as a very significant factor since hydrogel-filled voids do not contribute to the strength parameters. The formation of the affected zone around SAP cores depends on the chemical composition of SAPs considerably as the higher cross-linking density influences the desorption rate. Based on achieved results, utilization of SAPs in building materials should be studied at a more detailed level with particular importance on the definition of SAP-related voids and affected zone around SAP particles.
Zobrazit více v PubMed
Fernandez C.A., Correa M., Nguyen M.T., Rod K.A., Dai G.L., Cosimbescu L., Rousseau R., Glezakou V.A. Progress and challenges in self-healing cementitious materials. J. Mater. Sci. 2021;56:201–230. doi: 10.1007/s10853-020-05164-7. DOI
Makul N. Advanced smart concrete—A review of current progress, benefits and challenges. J. Clean. Prod. 2020;274:122899. doi: 10.1016/j.jclepro.2020.122899. DOI
He Z.M., Shen A.Q., Guo Y.C., Lyu Z.H., Li D.S., Qin X., Zhao M., Wang Z.L. Cement-based materials modified with superabsorbent polymers: A review. Constr. Build. Mater. 2019;225:569–590. doi: 10.1016/j.conbuildmat.2019.07.139. DOI
Lee H.X.D., Wong H.S., Buenfeld N.R. Self-sealing of cracks in concrete using superabsorbent polymers. Cem. Concr. Res. 2016;79:194–208. doi: 10.1016/j.cemconres.2015.09.008. DOI
Hong G., Song C., Choi S. Autogenous Healing of Early-Age Cracks in Cementitious Materials by Superabsorbent Polymers. Materials. 2020;13:690. doi: 10.3390/ma13030690. PubMed DOI PMC
Fort J., Koci J., Pokorny J., Cerny R. Influence of Superabsorbent Polymers on Moisture Control in Building Interiors. Energies. 2020;13:2009. doi: 10.3390/en13082009. DOI
Fort J., Sal J., Koci J., Cerny R. Energy Efficiency of Novel Interior Surface Layer with Improved Thermal Characteristics and Its Effect on Hygrothermal Performance of Contemporary Building Envelopes. Energies. 2020;13:2012. doi: 10.3390/en13082012. DOI
Vieira J., Senff L., Goncalves H., Silva L., Ferreira V.M., Labrincha J.A. Functionalization of mortars for controlling the indoor ambient of buildings. Energy Build. 2014;70:224–236. doi: 10.1016/j.enbuild.2013.11.064. DOI
Senff L., Ascensao G., Hotza D., Ferreira V.M., Labrincha J.A. Assessment of the single and combined effect of superabsorbent particles and porogenic agents in nanotitania-containing mortars. Energy Build. 2016;127:980–990. doi: 10.1016/j.enbuild.2016.06.048. DOI
Ma S.W., Huang C.H., Baah P., Nantung T., Lu N. The influence of water-to-cement ratio and superabsorbent polymers (SAPs) on solid-like behaviors of fresh cement pastes. Constr. Build. Mater. 2021;275:122160. doi: 10.1016/j.conbuildmat.2020.122160. DOI
Kanellopoulou I.A., Kartsonakis I.A., Charitidis C.A. The Effect of Superabsorbent Polymers on the Microstructure and Self-Healing Properties of Cementitious-Based Composite Materials. Appl. Sci. 2021;11:700. doi: 10.3390/app11020700. DOI
Luo M., Bai J.Q., Jing K., Ding Z.Q., Yang D.Y., Qian C.X. Self-healing of early-age cracks in cement mortars with artificial functional aggregates. Constr. Build. Mater. 2021;272:121846. doi: 10.1016/j.conbuildmat.2020.121846. DOI
Huang H.L., Ye G. Self-healing of cracks in cement paste affected by additional Ca2+ ions in the healing agent. J. Intell. Mater. Syst. Struct. 2015;26:309–320. doi: 10.1177/1045389X14525490. DOI
Sidiq A., Gravina R., Setunge S., Giustozzi F. The effectiveness of Super Absorbent polymers and superplasticizer in self-healing of cementitious materials. Constr. Build. Mater. 2020;253:15119175. doi: 10.1016/j.conbuildmat.2020.119175. DOI
Zhao S.Y., Jensen O.M., Hasholt M.T. Measuring absorption of superabsorbent polymers in cementitious environments. Mater. Struct. 2020;53:11. doi: 10.1617/s11527-020-1442-x. DOI
Lefever G., Aggelis D.G., De Belie N., Raes M., Hauffman T., Van Hemelrijck D., Snoeck D. The Influence of Superabsorbent Polymers and Nanosilica on the Hydration Process and Microstructure of Cementitious Mixtures. Materials. 2020;13:5194. doi: 10.3390/ma13225194. PubMed DOI PMC
Liu J.H., Farzadnia N., Khayat K.H., Shi C.J. Effects of SAP characteristics on internal curing of UHPC matrix. Constr. Build. Mater. 2021;280:122530. doi: 10.1016/j.conbuildmat.2021.122530. DOI
Reis P.F.O., Evangelista F.E., Silva E.F. Profile of internal relative humidity and depth of drying in cementitious materials containing superabsorbent polymer and nano-silica particles. Constr. Build. Mater. 2020;237:117412. doi: 10.1016/j.conbuildmat.2019.117412. DOI
Yang L., Shi C.J., Wu Z.M. Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete—A review. Compos. Part B-Eng. 2019;178:107456. doi: 10.1016/j.compositesb.2019.107456. DOI
Yang J.B., Sun Z.P., Zhao Y.H., Ji Y.L., Li B.Y. The Water Absorption-release of Superabsorbent Polymers in Fresh Cement Paste: An NMR Study. J. Adv. Concr. Technol. 2020;18:139–145. doi: 10.3151/jact.18.139. DOI
Mechtcherine V., Snoeck D., Schroefl C., De Belie N., Klemm A.J., Ichimiya K., Moon J., Wyrzykowski M., Lura P., Toropovs N., et al. Testing superabsorbent polymer (SAP) sorption properties prior to implementation in concrete: Results of a RILEM Round-Robin Test. Mater. Struct. 2018;51:28. doi: 10.1617/s11527-018-1149-4. DOI
Senff L., Modolo R.C.E., Ascensao G., Hotza D., Ferreira V.M., Labrincha J.A. Development of mortars containing superabsorbent polymer. Constr. Build. Mater. 2015;95:575–584. doi: 10.1016/j.conbuildmat.2015.07.173. DOI
Goncalves H., Goncalves B., Silva L., Raupp-Pereira F., Senff L., Labrincha J.A. Development of porogene-containing mortars for levelling the indoor ambient moisture. Ceram. Int. 2014;40:15489–15495. doi: 10.1016/j.ceramint.2014.07.010. DOI
Goncalves H., Goncalves B., Silva L., Vieira N., Raupp-Pereira F., Senff L., Labrincha J.A. The influence of porogene additives on the properties of mortars used to control the ambient moisture. Energy Build. 2014;74:61–68. doi: 10.1016/j.enbuild.2014.01.016. DOI
Isikdag B., Topcu I.B. The effect of ground granulated blast-furnace slag on properties of Horasan mortar. Constr. Build. Mater. 2013;40:448–454. doi: 10.1016/j.conbuildmat.2012.11.016. DOI
Fort J., Madera J., Hotek P., Mildner M., Cerny R. Optimization of Concrete Mixture Composition with Superabsorbent Polymer Admixture; Proceedings of the International Conference on Numerical Analysis and Applied Mathematics (ICNAAM); Rhodes, Greece. 23–28 September 2019; DOI
Tenorio J.R., Snoeck D., De Belie N. Mixing protocols for plant-scale production of concrete with superabsorbent polymers. Struct. Concr. 2020;21:983–991. doi: 10.1002/suco.201900443. DOI
Kang S.H., Hong S.G., Moon J. The effect of superabsorbent polymer on various scale of pore structure in ultra-high performance concrete. Constr. Build. Mater. 2018;172:29–40. doi: 10.1016/j.conbuildmat.2018.03.193. DOI
Choi H., Inoue M., Kim D., Sengoku R. Effect of Addition of Ca2+ and CO32− Ions with Temperature Control on Self-Healing of Hardened Cement Paste. Materials. 2019;12:2456. doi: 10.3390/ma12152456. PubMed DOI PMC
Hu M.M., Guo J.T., Du J.B., Liu Z.X., Li P.P., Ren X.K., Feng Y.K. Development of Ca2+-based, ion-responsive superabsorbent hydrogel for cement applications: Self-healing and compressive strength. J. Colloid Interface Sci. 2019;538:397–403. doi: 10.1016/j.jcis.2018.12.004. PubMed DOI
Schrofl C., Mechtcherine V., Gorges M. Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem. Concr. Res. 2012;42:865–873. doi: 10.1016/j.cemconres.2012.03.011. DOI
Zhu Q., Barney C.W., Erk K.A. Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete. Mater. Struct. 2015;48:2261–2276. doi: 10.1617/s11527-014-0308-5. DOI
Yang J., Wang F.Z., He X.Y., Su Y. Pore structure of affected zone around saturated and large superabsorbent polymers in cement paste. Cem. Concr. Compos. 2019;97:54–67. doi: 10.1016/j.cemconcomp.2018.12.020. DOI
Wang F.Z., Yang J., Hu S.G., Li X.P., Cheng H. Influence of superabsorbent polymers on the surrounding cement paste. Cem. Concr. Res. 2016;81:112–121. doi: 10.1016/j.cemconres.2015.12.004. DOI
Snoeck D., Pel L., De Belie N. Comparison of different techniques to study the nanostructure and the microstructure of cementitious materials with and without superabsorbent polymers. Constr. Build. Mater. 2019;223:244–253. doi: 10.1016/j.conbuildmat.2019.06.225. DOI
Liu H.Z., Zhang Q., Gu C.S., Su H.Z., Li V. Influence of microcrack self-healing behavior on the permeability of Engineered Cementitious Composites. Cem. Concr. Compos. 2017;82:14–22. doi: 10.1016/j.cemconcomp.2017.04.004. DOI
Atahan H.N., Oktar O.N., Tasdemir M.A. Effects of water-cement ratio and curing time on the critical pore width of hardened cement paste. Constr. Build. Mater. 2009;23:1196–1200. doi: 10.1016/j.conbuildmat.2008.08.011. DOI
Ma X.W., Liu J.H., Wu Z.M., Shi C.J. Effects of SAP on the properties and pore structure of high performance cement-based materials. Constr. Build. Mater. 2017;131:476–484. doi: 10.1016/j.conbuildmat.2016.11.090. DOI
Jung A., Endres M.B., Weichold O. Influence of Environmental Factors on the Swelling Capacities of Superabsorbent Polymers Used in Concrete. Polymers. 2020;12:2185. doi: 10.3390/polym12102185. PubMed DOI PMC
Farzanian K., Ghahremaninezhad A. Desorption of superabsorbent hydrogels with varied chemical compositions in cementitious materials. Mater. Struct. 2018;51:15. doi: 10.1617/s11527-017-1128-1. PubMed DOI PMC
Wehbe Y., Ghahremaninezhad A. Combined effect of shrinkage reducing admixtures (SRA) and superabsorbent polymers (SAP) on the autogenous shrinkage, hydration and properties of cementitious materials. Constr. Build. Mater. 2017;138:151–162. doi: 10.1016/j.conbuildmat.2016.12.206. DOI
Krafcik M.J., Erk K.A. Characterization of superabsorbent poly(sodium-acrylate acrylamide) hydrogels and influence of chemical structure on internally cured mortar. Mater. Struct. 2016;49:4765–4778. doi: 10.1617/s11527-016-0823-7. DOI
Patra S.K., Swain S.K. Swelling Study of Superabsorbent PAA-co-PAM/Clay Nanohydrogel. J. Appl. Polym. Sci. 2011;120:1533–1538. doi: 10.1002/app.33381. DOI
Snoeck D., Dewanckele J., Cnudde V., De Belie N. X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers. Cem. Concr. Compos. 2016;65:83–93. doi: 10.1016/j.cemconcomp.2015.10.016. DOI
Zhong P.H., Wyrzykowski M., Toropovs N., Li L., Liu J.P., Lura P. Internal curing with superabsorbent polymers of different chemical structures. Cem. Concr. Res. 2019;123:105789. doi: 10.1016/j.cemconres.2019.105789. DOI
Tan Y.W., Chen H.X., Wang Z.D., Xue C., He R. Performances of Cement Mortar Incorporating Superabsorbent Polymer (SAP) Using Different Dosing Methods. Materials. 2019;12:1619. doi: 10.3390/ma12101619. PubMed DOI PMC
Danish A., Mosaberpanah M.A., Salim M.U. Robust evaluation of superabsorbent polymers as an internal curing agent in cementitious composites. J. Mater. Sci. 2021;56:136–172. doi: 10.1007/s10853-020-05131-2. Review. DOI
Paul A., Murgadas S., Delpiano J., Moreno-Casas P.A., Walczak M., Lopez M. The role of moisture transport mechanisms on the performance of lightweight aggregates in internal curing. Constr. Build. Mater. 2021;268:121191. doi: 10.1016/j.conbuildmat.2020.121191. DOI
Dang J.T., Zhao J., Du Z.H. Effect of Superabsorbent Polymer on the Properties of Concrete. Polymers. 2017;9:672. doi: 10.3390/polym9120672. PubMed DOI PMC
Shen D.J., Wang X.D., Cheng D.B., Zhang J.Y., Jiang G.Q. Effect of internal curing with super absorbent polymers on autogenous shrinkage of concrete at early age. Constr. Build. Mater. 2016;106:512–522. doi: 10.1016/j.conbuildmat.2015.12.115. DOI
Guo S.C., Forooshani P.K., Dai Q.L., Lee B.P., Si R.Z., Wang J.Q. Design of pH-responsive SAP polymer for pore solution chemistry regulation and crack sealing in cementitious materials. Compos. Part B-Eng. 2020;199:108262. doi: 10.1016/j.compositesb.2020.108262. PubMed DOI PMC
Gwon S., Ahn E., Shin M. Water permeability and rapid self-healing of sustainable sulfur composites using superabsorbent polymer and binary cement. Constr. Build. Mater. 2020;265:120306. doi: 10.1016/j.conbuildmat.2020.120306. DOI
Olawuyi B.J., Babafemi A.J., Boshoff W.P. Early-age and long-term strength development of high-performance concrete with SAP. Constr. Build. Mater. 2021;267:121798. doi: 10.1016/j.conbuildmat.2020.121798. DOI
Tan Y.W., Lu X.S., He R., Chen H.X., Wang Z.J. Influence of superabsorbent polymers (SAPs) type and particle size on the performance of surrounding cement-based materials. Constr. Build. Mater. 2021;270:121442. doi: 10.1016/j.conbuildmat.2020.121442. DOI