Effects of Secondary Porosity on Microstructure and Mechanical Properties of SAP-Containing Lime-Based Plasters

. 2022 Mar 15 ; 14 (6) : . [epub] 20220315

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35335493

Grantová podpora
22-00420S Czech Science Foundation

Despite the many benefits associated with the utilization of superabsorbent polymers (SAPs), several drawbacks have been reported. In particular, the effect of SAPs on microstructure, together with its consequences for mechanical properties, is not fully understood yet for some composite materials. This study analyzes the role of SAPs in the formation of the microstructure of lime composites, taking into account their chemical composition. The obtained experimental results show that the particle size and cross-linking density of used SAPs are crucial parameters affecting both the microstructure and mechanical performance of the analyzed composites. Coarser SAPs with low cross-linking density in the dosage of 0.5 and 1 wt.% are found as the most suitable solution, leading even to a slight improvement of mechanical parameters. The secondary porosity formed by swelled hydrogels is identified as a very significant factor since hydrogel-filled voids do not contribute to the strength parameters. The formation of the affected zone around SAP cores depends on the chemical composition of SAPs considerably as the higher cross-linking density influences the desorption rate. Based on achieved results, utilization of SAPs in building materials should be studied at a more detailed level with particular importance on the definition of SAP-related voids and affected zone around SAP particles.

Zobrazit více v PubMed

Fernandez C.A., Correa M., Nguyen M.T., Rod K.A., Dai G.L., Cosimbescu L., Rousseau R., Glezakou V.A. Progress and challenges in self-healing cementitious materials. J. Mater. Sci. 2021;56:201–230. doi: 10.1007/s10853-020-05164-7. DOI

Makul N. Advanced smart concrete—A review of current progress, benefits and challenges. J. Clean. Prod. 2020;274:122899. doi: 10.1016/j.jclepro.2020.122899. DOI

He Z.M., Shen A.Q., Guo Y.C., Lyu Z.H., Li D.S., Qin X., Zhao M., Wang Z.L. Cement-based materials modified with superabsorbent polymers: A review. Constr. Build. Mater. 2019;225:569–590. doi: 10.1016/j.conbuildmat.2019.07.139. DOI

Lee H.X.D., Wong H.S., Buenfeld N.R. Self-sealing of cracks in concrete using superabsorbent polymers. Cem. Concr. Res. 2016;79:194–208. doi: 10.1016/j.cemconres.2015.09.008. DOI

Hong G., Song C., Choi S. Autogenous Healing of Early-Age Cracks in Cementitious Materials by Superabsorbent Polymers. Materials. 2020;13:690. doi: 10.3390/ma13030690. PubMed DOI PMC

Fort J., Koci J., Pokorny J., Cerny R. Influence of Superabsorbent Polymers on Moisture Control in Building Interiors. Energies. 2020;13:2009. doi: 10.3390/en13082009. DOI

Fort J., Sal J., Koci J., Cerny R. Energy Efficiency of Novel Interior Surface Layer with Improved Thermal Characteristics and Its Effect on Hygrothermal Performance of Contemporary Building Envelopes. Energies. 2020;13:2012. doi: 10.3390/en13082012. DOI

Vieira J., Senff L., Goncalves H., Silva L., Ferreira V.M., Labrincha J.A. Functionalization of mortars for controlling the indoor ambient of buildings. Energy Build. 2014;70:224–236. doi: 10.1016/j.enbuild.2013.11.064. DOI

Senff L., Ascensao G., Hotza D., Ferreira V.M., Labrincha J.A. Assessment of the single and combined effect of superabsorbent particles and porogenic agents in nanotitania-containing mortars. Energy Build. 2016;127:980–990. doi: 10.1016/j.enbuild.2016.06.048. DOI

Ma S.W., Huang C.H., Baah P., Nantung T., Lu N. The influence of water-to-cement ratio and superabsorbent polymers (SAPs) on solid-like behaviors of fresh cement pastes. Constr. Build. Mater. 2021;275:122160. doi: 10.1016/j.conbuildmat.2020.122160. DOI

Kanellopoulou I.A., Kartsonakis I.A., Charitidis C.A. The Effect of Superabsorbent Polymers on the Microstructure and Self-Healing Properties of Cementitious-Based Composite Materials. Appl. Sci. 2021;11:700. doi: 10.3390/app11020700. DOI

Luo M., Bai J.Q., Jing K., Ding Z.Q., Yang D.Y., Qian C.X. Self-healing of early-age cracks in cement mortars with artificial functional aggregates. Constr. Build. Mater. 2021;272:121846. doi: 10.1016/j.conbuildmat.2020.121846. DOI

Huang H.L., Ye G. Self-healing of cracks in cement paste affected by additional Ca2+ ions in the healing agent. J. Intell. Mater. Syst. Struct. 2015;26:309–320. doi: 10.1177/1045389X14525490. DOI

Sidiq A., Gravina R., Setunge S., Giustozzi F. The effectiveness of Super Absorbent polymers and superplasticizer in self-healing of cementitious materials. Constr. Build. Mater. 2020;253:15119175. doi: 10.1016/j.conbuildmat.2020.119175. DOI

Zhao S.Y., Jensen O.M., Hasholt M.T. Measuring absorption of superabsorbent polymers in cementitious environments. Mater. Struct. 2020;53:11. doi: 10.1617/s11527-020-1442-x. DOI

Lefever G., Aggelis D.G., De Belie N., Raes M., Hauffman T., Van Hemelrijck D., Snoeck D. The Influence of Superabsorbent Polymers and Nanosilica on the Hydration Process and Microstructure of Cementitious Mixtures. Materials. 2020;13:5194. doi: 10.3390/ma13225194. PubMed DOI PMC

Liu J.H., Farzadnia N., Khayat K.H., Shi C.J. Effects of SAP characteristics on internal curing of UHPC matrix. Constr. Build. Mater. 2021;280:122530. doi: 10.1016/j.conbuildmat.2021.122530. DOI

Reis P.F.O., Evangelista F.E., Silva E.F. Profile of internal relative humidity and depth of drying in cementitious materials containing superabsorbent polymer and nano-silica particles. Constr. Build. Mater. 2020;237:117412. doi: 10.1016/j.conbuildmat.2019.117412. DOI

Yang L., Shi C.J., Wu Z.M. Mitigation techniques for autogenous shrinkage of ultra-high-performance concrete—A review. Compos. Part B-Eng. 2019;178:107456. doi: 10.1016/j.compositesb.2019.107456. DOI

Yang J.B., Sun Z.P., Zhao Y.H., Ji Y.L., Li B.Y. The Water Absorption-release of Superabsorbent Polymers in Fresh Cement Paste: An NMR Study. J. Adv. Concr. Technol. 2020;18:139–145. doi: 10.3151/jact.18.139. DOI

Mechtcherine V., Snoeck D., Schroefl C., De Belie N., Klemm A.J., Ichimiya K., Moon J., Wyrzykowski M., Lura P., Toropovs N., et al. Testing superabsorbent polymer (SAP) sorption properties prior to implementation in concrete: Results of a RILEM Round-Robin Test. Mater. Struct. 2018;51:28. doi: 10.1617/s11527-018-1149-4. DOI

Senff L., Modolo R.C.E., Ascensao G., Hotza D., Ferreira V.M., Labrincha J.A. Development of mortars containing superabsorbent polymer. Constr. Build. Mater. 2015;95:575–584. doi: 10.1016/j.conbuildmat.2015.07.173. DOI

Goncalves H., Goncalves B., Silva L., Raupp-Pereira F., Senff L., Labrincha J.A. Development of porogene-containing mortars for levelling the indoor ambient moisture. Ceram. Int. 2014;40:15489–15495. doi: 10.1016/j.ceramint.2014.07.010. DOI

Goncalves H., Goncalves B., Silva L., Vieira N., Raupp-Pereira F., Senff L., Labrincha J.A. The influence of porogene additives on the properties of mortars used to control the ambient moisture. Energy Build. 2014;74:61–68. doi: 10.1016/j.enbuild.2014.01.016. DOI

Isikdag B., Topcu I.B. The effect of ground granulated blast-furnace slag on properties of Horasan mortar. Constr. Build. Mater. 2013;40:448–454. doi: 10.1016/j.conbuildmat.2012.11.016. DOI

Fort J., Madera J., Hotek P., Mildner M., Cerny R. Optimization of Concrete Mixture Composition with Superabsorbent Polymer Admixture; Proceedings of the International Conference on Numerical Analysis and Applied Mathematics (ICNAAM); Rhodes, Greece. 23–28 September 2019; DOI

Tenorio J.R., Snoeck D., De Belie N. Mixing protocols for plant-scale production of concrete with superabsorbent polymers. Struct. Concr. 2020;21:983–991. doi: 10.1002/suco.201900443. DOI

Kang S.H., Hong S.G., Moon J. The effect of superabsorbent polymer on various scale of pore structure in ultra-high performance concrete. Constr. Build. Mater. 2018;172:29–40. doi: 10.1016/j.conbuildmat.2018.03.193. DOI

Choi H., Inoue M., Kim D., Sengoku R. Effect of Addition of Ca2+ and CO32− Ions with Temperature Control on Self-Healing of Hardened Cement Paste. Materials. 2019;12:2456. doi: 10.3390/ma12152456. PubMed DOI PMC

Hu M.M., Guo J.T., Du J.B., Liu Z.X., Li P.P., Ren X.K., Feng Y.K. Development of Ca2+-based, ion-responsive superabsorbent hydrogel for cement applications: Self-healing and compressive strength. J. Colloid Interface Sci. 2019;538:397–403. doi: 10.1016/j.jcis.2018.12.004. PubMed DOI

Schrofl C., Mechtcherine V., Gorges M. Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem. Concr. Res. 2012;42:865–873. doi: 10.1016/j.cemconres.2012.03.011. DOI

Zhu Q., Barney C.W., Erk K.A. Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete. Mater. Struct. 2015;48:2261–2276. doi: 10.1617/s11527-014-0308-5. DOI

Yang J., Wang F.Z., He X.Y., Su Y. Pore structure of affected zone around saturated and large superabsorbent polymers in cement paste. Cem. Concr. Compos. 2019;97:54–67. doi: 10.1016/j.cemconcomp.2018.12.020. DOI

Wang F.Z., Yang J., Hu S.G., Li X.P., Cheng H. Influence of superabsorbent polymers on the surrounding cement paste. Cem. Concr. Res. 2016;81:112–121. doi: 10.1016/j.cemconres.2015.12.004. DOI

Snoeck D., Pel L., De Belie N. Comparison of different techniques to study the nanostructure and the microstructure of cementitious materials with and without superabsorbent polymers. Constr. Build. Mater. 2019;223:244–253. doi: 10.1016/j.conbuildmat.2019.06.225. DOI

Liu H.Z., Zhang Q., Gu C.S., Su H.Z., Li V. Influence of microcrack self-healing behavior on the permeability of Engineered Cementitious Composites. Cem. Concr. Compos. 2017;82:14–22. doi: 10.1016/j.cemconcomp.2017.04.004. DOI

Atahan H.N., Oktar O.N., Tasdemir M.A. Effects of water-cement ratio and curing time on the critical pore width of hardened cement paste. Constr. Build. Mater. 2009;23:1196–1200. doi: 10.1016/j.conbuildmat.2008.08.011. DOI

Ma X.W., Liu J.H., Wu Z.M., Shi C.J. Effects of SAP on the properties and pore structure of high performance cement-based materials. Constr. Build. Mater. 2017;131:476–484. doi: 10.1016/j.conbuildmat.2016.11.090. DOI

Jung A., Endres M.B., Weichold O. Influence of Environmental Factors on the Swelling Capacities of Superabsorbent Polymers Used in Concrete. Polymers. 2020;12:2185. doi: 10.3390/polym12102185. PubMed DOI PMC

Farzanian K., Ghahremaninezhad A. Desorption of superabsorbent hydrogels with varied chemical compositions in cementitious materials. Mater. Struct. 2018;51:15. doi: 10.1617/s11527-017-1128-1. PubMed DOI PMC

Wehbe Y., Ghahremaninezhad A. Combined effect of shrinkage reducing admixtures (SRA) and superabsorbent polymers (SAP) on the autogenous shrinkage, hydration and properties of cementitious materials. Constr. Build. Mater. 2017;138:151–162. doi: 10.1016/j.conbuildmat.2016.12.206. DOI

Krafcik M.J., Erk K.A. Characterization of superabsorbent poly(sodium-acrylate acrylamide) hydrogels and influence of chemical structure on internally cured mortar. Mater. Struct. 2016;49:4765–4778. doi: 10.1617/s11527-016-0823-7. DOI

Patra S.K., Swain S.K. Swelling Study of Superabsorbent PAA-co-PAM/Clay Nanohydrogel. J. Appl. Polym. Sci. 2011;120:1533–1538. doi: 10.1002/app.33381. DOI

Snoeck D., Dewanckele J., Cnudde V., De Belie N. X-ray computed microtomography to study autogenous healing of cementitious materials promoted by superabsorbent polymers. Cem. Concr. Compos. 2016;65:83–93. doi: 10.1016/j.cemconcomp.2015.10.016. DOI

Zhong P.H., Wyrzykowski M., Toropovs N., Li L., Liu J.P., Lura P. Internal curing with superabsorbent polymers of different chemical structures. Cem. Concr. Res. 2019;123:105789. doi: 10.1016/j.cemconres.2019.105789. DOI

Tan Y.W., Chen H.X., Wang Z.D., Xue C., He R. Performances of Cement Mortar Incorporating Superabsorbent Polymer (SAP) Using Different Dosing Methods. Materials. 2019;12:1619. doi: 10.3390/ma12101619. PubMed DOI PMC

Danish A., Mosaberpanah M.A., Salim M.U. Robust evaluation of superabsorbent polymers as an internal curing agent in cementitious composites. J. Mater. Sci. 2021;56:136–172. doi: 10.1007/s10853-020-05131-2. Review. DOI

Paul A., Murgadas S., Delpiano J., Moreno-Casas P.A., Walczak M., Lopez M. The role of moisture transport mechanisms on the performance of lightweight aggregates in internal curing. Constr. Build. Mater. 2021;268:121191. doi: 10.1016/j.conbuildmat.2020.121191. DOI

Dang J.T., Zhao J., Du Z.H. Effect of Superabsorbent Polymer on the Properties of Concrete. Polymers. 2017;9:672. doi: 10.3390/polym9120672. PubMed DOI PMC

Shen D.J., Wang X.D., Cheng D.B., Zhang J.Y., Jiang G.Q. Effect of internal curing with super absorbent polymers on autogenous shrinkage of concrete at early age. Constr. Build. Mater. 2016;106:512–522. doi: 10.1016/j.conbuildmat.2015.12.115. DOI

Guo S.C., Forooshani P.K., Dai Q.L., Lee B.P., Si R.Z., Wang J.Q. Design of pH-responsive SAP polymer for pore solution chemistry regulation and crack sealing in cementitious materials. Compos. Part B-Eng. 2020;199:108262. doi: 10.1016/j.compositesb.2020.108262. PubMed DOI PMC

Gwon S., Ahn E., Shin M. Water permeability and rapid self-healing of sustainable sulfur composites using superabsorbent polymer and binary cement. Constr. Build. Mater. 2020;265:120306. doi: 10.1016/j.conbuildmat.2020.120306. DOI

Olawuyi B.J., Babafemi A.J., Boshoff W.P. Early-age and long-term strength development of high-performance concrete with SAP. Constr. Build. Mater. 2021;267:121798. doi: 10.1016/j.conbuildmat.2020.121798. DOI

Tan Y.W., Lu X.S., He R., Chen H.X., Wang Z.J. Influence of superabsorbent polymers (SAPs) type and particle size on the performance of surrounding cement-based materials. Constr. Build. Mater. 2021;270:121442. doi: 10.1016/j.conbuildmat.2020.121442. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...