One-Step Synthesis of Nanoliposomal Copper Diethyldithiocarbamate and Its Assessment for Cancer Therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TIPS- CRC-232667
Canada Research Chairs
PubMed
35336014
PubMed Central
PMC8952320
DOI
10.3390/pharmaceutics14030640
PII: pharmaceutics14030640
Knihovny.cz E-zdroje
- Klíčová slova
- cancer therapeutics, copper diethyldithiocarbamate, drug delivery, ethanol injection, liposomes, melanoma, protein corona,
- Publikační typ
- časopisecké články MeSH
The metal complex copper diethyldithiocarbamate (CuET) induces cancer cell death by inhibiting protein degradation and induces proteotoxic stress, making CuET a promising cancer therapeutic. However, no clinical formulation of CuET exists to date as the drug is insoluble in water and exhibits poor bioavailability. To develop a scalable formulation, nanoliposomal (LP) CuET was synthesized using ethanol injection as a facile one-step method that is suitable for large-scale manufacturing. The nanoparticles are monodispersed, colloidally stable, and approximately 100 nm in diameter with an encapsulation efficiency of over 80%. LP-CuET demonstrates excellent stability in plasma, minimal size change, and little drug release after six-month storage at various temperatures. Additionally, melanoma cell lines exhibit significant sensitivity to LP-CuET and cellular uptake occurs predominantly through endocytosis in YUMM 1.7 cancer cells. Intracellular drug delivery is mediated by vesicle acidification with more nanoparticles being internalized by melanoma cells compared with RAW 264.7 macrophages. Additionally, the nanoparticles preferentially accumulate in YUMM 1.7 tumors where they induce cancer cell death in vivo. The development and characterization of a stable and scalable CuET formulation illustrated in this study fulfils the requirements needed for a potent clinical grade formulation.
Zobrazit více v PubMed
Skrott Z., Mistrik M., Andersen K.K., Friis S., Majera D., Gursky J., Ozdian T., Bartkova J., Turi Z., Moudry P., et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 2017;552:194–199. doi: 10.1038/nature25016. PubMed DOI PMC
Oakes S.A. Endoplasmic Reticulum Stress Signaling in Cancer Cells. Am. J. Pathol. 2020;190:934–946. doi: 10.1016/j.ajpath.2020.01.010. PubMed DOI PMC
Chen W., Yang W., Chen P., Huang Y., Li F. Disulfiram Copper Nanoparticles Prepared with a Stabilized Metal Ion Ligand Complex Method for Treating Drug-Resistant Prostate Cancers. ACS Appl. Mater. Interfaces. 2018;10:41118–41128. doi: 10.1021/acsami.8b14940. PubMed DOI
Ren L., Feng W., Shao J., Ma J., Xu M., Zhu B.Z., Zheng N., Liu S. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting. Theranostics. 2020;10:6384–6398. doi: 10.7150/thno.45558. PubMed DOI PMC
Said Suliman A., Khoder M., Tolaymat I., Webster M., Alany R.G., Wang W., Elhissi A., Najlah M. Cyclodextrin Diethyldithiocarbamate Copper II Inclusion Complexes: A Promising Chemotherapeutic Delivery System against Chemoresistant Triple Negative Breast Cancer Cell Lines. Pharmaceutics. 2021;13:84. doi: 10.3390/pharmaceutics13010084. PubMed DOI PMC
Wehbe M., Anantha M., Shi M., Leung A.W., Dragowska W.H., Sanche L., Bally M.B. Development and optimization of an injectable formulation of copper diethyldithiocarbamate, an active anticancer agent. Int. J. Nanomed. 2017;12:4129–4146. doi: 10.2147/IJN.S137347. PubMed DOI PMC
Xu Y., Kong Y., Xu J., Li X., Gou J., Yin T., He H., Zhang Y., Tang X. Doxorubicin intercalated copper diethyldithiocarbamate functionalized layered double hydroxide hybrid nanoparticles for targeted therapy of hepatocellular carcinoma. Biomater. Sci. 2020;8:897–911. doi: 10.1039/C9BM01394F. PubMed DOI
Li X., Du K., Sun J., Feng F.D. Apoferritin as a Carrier of Cu(II) Diethyldithiocarbamate and Biomedical Application for Glutathione-Responsive Combination Chemotherapy. ACS Appl. Bio Mater. 2020;3:654–663. doi: 10.1021/acsabm.9b01014. PubMed DOI
MacKenzie E.L., Iwasaki K., Tsuji Y. Intracellular iron transport and storage: From molecular mechanisms to health implications. Antioxid. Redox Signal. 2008;10:997–1030. doi: 10.1089/ars.2007.1893. PubMed DOI PMC
Sindhwani S., Syed A.M., Ngai J., Kingston B.R., Maiorino L., Rothschild J., MacMillan P., Zhang Y.W., Rajesh N.U., Hoang T., et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020;19:566–575. doi: 10.1038/s41563-019-0566-2. PubMed DOI
de Lazaro I., Mooney D.J. A nanoparticle’s pathway into tumours. Nat. Mater. 2020;19:486–487. doi: 10.1038/s41563-020-0669-9. PubMed DOI
Oh J.Y., Kim H.S., Palanikumar L., Go E.M., Jana B., Park S.A., Kim H.Y., Kim K., Seo J.K., Kwak S.K., et al. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat. Commun. 2018;9:1–9. doi: 10.1038/s41467-018-06979-4. PubMed DOI PMC
Papi M., Caputo D., Palmieri V., Coppola R., Palchetti S., Bugli F., Martini C., Digiacomo L., Pozzi D., Caracciolo G. Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale. 2017;9:10327–10334. doi: 10.1039/C7NR03042H. PubMed DOI
Pattipeiluhu R., Crielaard S., Klein-Schiphorst I., Florea B.I., Kros A., Campbell F. Unbiased Identification of the Liposome Protein Corona using Photoaffinity-based Chemoproteomics. ACS Cent. Sci. 2020;6:535–545. doi: 10.1021/acscentsci.9b01222. PubMed DOI PMC
Ritz S., Schottler S., Kotman N., Baier G., Musyanovych A., Kuharev J., Landfester K., Schild H., Jahn O., Tenzer S., et al. Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake. Biomacromolecules. 2015;16:1311–1321. doi: 10.1021/acs.biomac.5b00108. PubMed DOI
Zhang Z., Guan J., Jiang Z.X., Yang Y., Liu J.C., Hua W., Mao Y., Li C., Lu W.Y., Qian J., et al. Brain-targeted drug delivery by manipulating protein corona functions. Nat. Commun. 2019;10:1–11. doi: 10.1038/s41467-019-11593-z. PubMed DOI PMC
Elechalawar C.K., Hossen M.N., McNally L., Bhattacharya R., Mukherjee P. Analysing the nanoparticle-protein corona for potential molecular target identification. J. Control. Release. 2020;322:122–136. doi: 10.1016/j.jconrel.2020.03.008. PubMed DOI PMC
Giulimondi F., Digiacomo L., Pozzi D., Palchetti S., Vulpis E., Capriotti A.L., Chiozzi R.Z., Lagana A., Amenitsch H., Masuelli L., et al. Interplay of protein corona and immune cells controls blood residency of liposomes. Nat. Commun. 2019;10:1–11. doi: 10.1038/s41467-019-11642-7. PubMed DOI PMC
Wehbe M., Anantha M., Backstrom I., Leung A., Chen K., Malhotra A., Edwards K., Bally M.B. Nanoscale Reaction Vessels Designed for Synthesis of Copper-Drug Complexes Suitable for Preclinical Development. PLoS ONE. 2016;11:e0153416. doi: 10.1371/journal.pone.0153416. PubMed DOI PMC
Hartwig F., Koll-Weber M., Suss R. Preclinical In Vitro Studies with 3D Spheroids to Evaluate Cu(DDC)2 Containing Liposomes for the Treatment of Neuroblastoma. Pharmaceutics. 2021;13:894. doi: 10.3390/pharmaceutics13060894. PubMed DOI PMC
Gouda A., Sakr O.S., Nasr M., Sammour O. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J. Drug Deliv. Sci. Technol. 2021;61:102174. doi: 10.1016/j.jddst.2020.102174. DOI
Jaafar-Maalej C., Diab R., Andrieu V., Elaissari A., Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res. 2010;20:228–243. doi: 10.3109/08982100903347923. PubMed DOI
Meeth K., Wang J.X., Micevic G., Damsky W., Bosenberg M.W. The YUMM lines: A series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment. Cell Melanoma Res. 2016;29:590–597. doi: 10.1111/pcmr.12498. PubMed DOI PMC
Wang J., Perry C.J., Meeth K., Thakral D., Damsky W., Micevic G., Kaech S., Blenman K., Bosenberg M. UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model. Pigment. Cell Melanoma Res. 2017;30:428–435. doi: 10.1111/pcmr.12591. PubMed DOI PMC
Hayashi Y., Takamiya M., Jensen P.B., Ojea-Jimenez I., Claude H., Antony C., Kjaer-Sorensen K., Grabher C., Boesen T., Gilliland D., et al. Differential Nanoparticle Sequestration by Macrophages and Scavenger Endothelial Cells Visualized in Vivo in Real-Time and at Ultrastructural Resolution. ACS Nano. 2020;14:1665–1681. doi: 10.1021/acsnano.9b07233. PubMed DOI
Tripuramallu S., Suthakaran R. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening for Some Pyrazole-Quinazoline Derivatives. Indo Am. J. Pharm. Sci. 2018;5:16606–16611. doi: 10.5281/zenodo.2443347. DOI
Vichai V., Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006;1:1112–1116. doi: 10.1038/nprot.2006.179. PubMed DOI
Marengo A., Forciniti S., Dando I., Dalla Pozza E., Stella B., Tsapis N., Yagoubi N., Fanelli G., Fattal E., Heeschen C., et al. Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes. Biochim. Biophys. Acta-Gen. Subj. 2019;1863:61–72. doi: 10.1016/j.bbagen.2018.09.018. PubMed DOI
Guang M.H.Z., Kavanagh E.L., Dunne L.P., Dowling P., Zhang L., Lindsay S., Bazou D., Goh C.Y., Hanley C., Bianchi G., et al. Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis. Cancers. 2019;11:66. doi: 10.3390/cancers11010066. PubMed DOI PMC
Miller S.E., Mathiasen S., Bright N.A., Pierre F., Kelly B.T., Kladt N., Schauss A., Merrifield C.J., Stamou D., Honing S., et al. CALM Regulates Clathrin-Coated Vesicle Size and Maturation by Directly Sensing and Driving Membrane Curvature. Dev. Cell. 2015;33:163–175. doi: 10.1016/j.devcel.2015.03.002. PubMed DOI PMC
Pelt J., Busatto S., Ferrari M., Thompson E.A., Mody K., Wolfram J. Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol. Ther. 2018;191:43–49. doi: 10.1016/j.pharmthera.2018.06.007. PubMed DOI PMC
Rodal S.K., Skretting G., Garred O., Vilhardt F., van Deurs B., Sandvig K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell. 1999;10:961–974. doi: 10.1091/mbc.10.4.961. PubMed DOI PMC
Vercauteren D., Vandenbroucke R.E., Jones A.T., Rejman J., Demeester J., De Smedt S.C., Sanders N.N., Braeckmans K. The Use of Inhibitors to Study Endocytic Pathways of Gene Carriers: Optimization and Pitfalls. Mol. Ther. 2010;18:561–569. doi: 10.1038/mt.2009.281. PubMed DOI PMC
Bulbake U., Doppalapudi S., Kommineni N., Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 2017;9:12. doi: 10.3390/pharmaceutics9020012. PubMed DOI PMC
Pochapski D.J., Carvalho Dos Santos C., Leite G.W., Pulcinelli S.H., Santilli C.V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir. 2021;37:13379–13389. doi: 10.1021/acs.langmuir.1c02056. PubMed DOI
Strauss G., Hauser H. Stabilization of Lipid Bilayer Vesicles by Sucrose during Freezing. Proc. Natl. Acad. Sci. USA. 1986;83:2422–2426. doi: 10.1073/pnas.83.8.2422. PubMed DOI PMC
Daraee H., Etemadi A., Kouhi M., Alimirzalu S., Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016;44:381–391. doi: 10.3109/21691401.2014.953633. PubMed DOI
Sou K., Tsuchida E. Electrostatic interactions and complement activation on the surface of phospholipid vesicle containing acidic lipids: Effect of the structure of acidic groups. Biochim. Et Biophys. Acta-Biomembr. 2008;1778:1035–1041. doi: 10.1016/j.bbamem.2008.01.006. PubMed DOI
Bai X., Wang J.L., Mu Q.X., Su G.X. In vivo Protein Corona Formation: Characterizations, Effects on Engineered Nanoparticles’ Biobehaviors, and Applications. Front. Bioeng. Biotechnol. 2021;9:263. doi: 10.3389/fbioe.2021.646708. PubMed DOI PMC
Settanni G., Zhou J.J., Suo T.C., Schottler S., Landfester K., Schmid F., Mailander V. Protein corona composition of poly(ethylene glycol)- and poly(phosphoester)-coated nanoparticles correlates strongly with the amino acid composition of the protein surface. Nanoscale. 2017;9:2138–2144. doi: 10.1039/C6NR07022A. PubMed DOI
Zani I.A., Stephen S.L., Mughal N.A., Russell D., Homer-Vanniasinkam S., Wheatcroft S.B., Ponnambalam S. Scavenger receptor structure and function in health and disease. Cells. 2015;4:178–201. doi: 10.3390/cells4020178. PubMed DOI PMC
Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC
Simon J., Kuhn G., Fichter M., Gehring S., Landfester K., Mailander V. Unraveling the In Vivo Protein Corona. Cells. 2021;10:132. doi: 10.3390/cells10010132. PubMed DOI PMC
Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC
Canton J., Khezri R., Glogauer M., Grinstein S. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol. Biol. Cell. 2014;25:3330–3341. doi: 10.1091/mbc.e14-05-0967. PubMed DOI PMC
Naufer A., Hipolito V.E.B., Ganesan S., Prashar A., Zaremberg V., Botelho R.J., Terebiznik M.R. pH of endophagosomes controls association of their membranes with Vps34 and Ptdlns(3)P levels. J. Cell Biol. 2018;214:329–346. doi: 10.1083/jcb.201702179. PubMed DOI PMC
Le Poole I.C., van den Wijngaard R.M., Westerhof W., Verkruisen R.P., Dutrieux R.P., Dingemans K.P., Das P.K. Phagocytosis by normal human melanocytes in vitro. Exp. Cell Res. 1993;205:388–395. doi: 10.1006/excr.1993.1102. PubMed DOI
Pan M., Zheng Q., Yu Y., Ai H., Xie Y., Zeng X., Wang C., Liu L., Zhao M. Seesaw conformations of Npl4 in the human p97 complex and the inhibitory mechanism of a disulfiram derivative. Nat. Commun. 2021;12:121. doi: 10.1038/s41467-020-20359-x. PubMed DOI PMC
Reczek C.R., Chandel N.S. The Two Faces of Reactive Oxygen Species in Cancer. Annu. Rev. Cancer Biol. 2017;1:79–98. doi: 10.1146/annurev-cancerbio-041916-065808. DOI
Watson I.R., Wu C.J., Gershenwald J.E., Chin L., Grp M.A.W., Network C.G.A.R. Comprehensive genomic characterization of cutaneous melanoma. Cancer Res. 2014;74:e63597. doi: 10.1158/1538-7445.Am2014-Lb-315. DOI
Wong S.Q., Li J., Salemi R., Sheppard K.E., Do H.D., Tothill R.W., McArthur G.A., Dobrovic A. Targeted-capture massively-parallel sequencing enables robust detection of clinically informative mutations from formalin-fixed tumours. Sci. Rep. 2013;3:1–10. doi: 10.1038/srep03494. PubMed DOI PMC
Bennie L.A., McCarthy H.O., Coulter J.A. Enhanced nanoparticle delivery exploiting tumour-responsive formulations. Cancer Nanotechnol. 2018;9:1–20. doi: 10.1186/s12645-018-0044-6. PubMed DOI PMC
Shi Y., Van der Meel R., Chen X.Y., Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10:7921–7924. doi: 10.7150/thno.49577. PubMed DOI PMC
Immordino M.L., Dosio F., Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 2006;1:297–315. PubMed PMC
Kingston B.R., Lin Z.P., Ouyang B., MacMillan P., Ngai J., Syed A.M., Sindhwani S., Chan W.C.W. Specific Endothelial Cells Gouvern Nanoparticle Entry into Solid Tumors. ACS Nano. 2021;15:14080–14094. doi: 10.1021/acsnano.1c04510. PubMed DOI
Bitto-Dotan R., Bohrisch J., Schmidt C., Tsuriel M., Tulichala R.N.P., Breuer E., Reich R., Hoffman A., Strosberg J. The Effect of Chemical Modifications of Chitosan on Intestinal Permeability and Oral Bioavailability of Carbamoylphosphonate JS403. J. Bioequiv. Availab. 2020;12:392. doi: 10.35248/0975-0851.20.12.392. DOI
Arvizo R.R., Miranda O.R., Moyano D.F., Walden C.A., Giri K., Bhattacharya R., Robertson J.D., Rotello V.M., Reid J.M., Mukherjee P. Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles. PLoS ONE. 2011;6:e24374. doi: 10.1371/journal.pone.0024374. PubMed DOI PMC
Guerrini L., Alvarez-Puebla R.A., Pazos-Peres N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials. 2018;11:1154. doi: 10.3390/ma11071154. PubMed DOI PMC