One-Step Synthesis of Nanoliposomal Copper Diethyldithiocarbamate and Its Assessment for Cancer Therapy

. 2022 Mar 14 ; 14 (3) : . [epub] 20220314

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35336014

Grantová podpora
TIPS- CRC-232667 Canada Research Chairs

Odkazy

PubMed 35336014
PubMed Central PMC8952320
DOI 10.3390/pharmaceutics14030640
PII: pharmaceutics14030640
Knihovny.cz E-zdroje

The metal complex copper diethyldithiocarbamate (CuET) induces cancer cell death by inhibiting protein degradation and induces proteotoxic stress, making CuET a promising cancer therapeutic. However, no clinical formulation of CuET exists to date as the drug is insoluble in water and exhibits poor bioavailability. To develop a scalable formulation, nanoliposomal (LP) CuET was synthesized using ethanol injection as a facile one-step method that is suitable for large-scale manufacturing. The nanoparticles are monodispersed, colloidally stable, and approximately 100 nm in diameter with an encapsulation efficiency of over 80%. LP-CuET demonstrates excellent stability in plasma, minimal size change, and little drug release after six-month storage at various temperatures. Additionally, melanoma cell lines exhibit significant sensitivity to LP-CuET and cellular uptake occurs predominantly through endocytosis in YUMM 1.7 cancer cells. Intracellular drug delivery is mediated by vesicle acidification with more nanoparticles being internalized by melanoma cells compared with RAW 264.7 macrophages. Additionally, the nanoparticles preferentially accumulate in YUMM 1.7 tumors where they induce cancer cell death in vivo. The development and characterization of a stable and scalable CuET formulation illustrated in this study fulfils the requirements needed for a potent clinical grade formulation.

Zobrazit více v PubMed

Skrott Z., Mistrik M., Andersen K.K., Friis S., Majera D., Gursky J., Ozdian T., Bartkova J., Turi Z., Moudry P., et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 2017;552:194–199. doi: 10.1038/nature25016. PubMed DOI PMC

Oakes S.A. Endoplasmic Reticulum Stress Signaling in Cancer Cells. Am. J. Pathol. 2020;190:934–946. doi: 10.1016/j.ajpath.2020.01.010. PubMed DOI PMC

Chen W., Yang W., Chen P., Huang Y., Li F. Disulfiram Copper Nanoparticles Prepared with a Stabilized Metal Ion Ligand Complex Method for Treating Drug-Resistant Prostate Cancers. ACS Appl. Mater. Interfaces. 2018;10:41118–41128. doi: 10.1021/acsami.8b14940. PubMed DOI

Ren L., Feng W., Shao J., Ma J., Xu M., Zhu B.Z., Zheng N., Liu S. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting. Theranostics. 2020;10:6384–6398. doi: 10.7150/thno.45558. PubMed DOI PMC

Said Suliman A., Khoder M., Tolaymat I., Webster M., Alany R.G., Wang W., Elhissi A., Najlah M. Cyclodextrin Diethyldithiocarbamate Copper II Inclusion Complexes: A Promising Chemotherapeutic Delivery System against Chemoresistant Triple Negative Breast Cancer Cell Lines. Pharmaceutics. 2021;13:84. doi: 10.3390/pharmaceutics13010084. PubMed DOI PMC

Wehbe M., Anantha M., Shi M., Leung A.W., Dragowska W.H., Sanche L., Bally M.B. Development and optimization of an injectable formulation of copper diethyldithiocarbamate, an active anticancer agent. Int. J. Nanomed. 2017;12:4129–4146. doi: 10.2147/IJN.S137347. PubMed DOI PMC

Xu Y., Kong Y., Xu J., Li X., Gou J., Yin T., He H., Zhang Y., Tang X. Doxorubicin intercalated copper diethyldithiocarbamate functionalized layered double hydroxide hybrid nanoparticles for targeted therapy of hepatocellular carcinoma. Biomater. Sci. 2020;8:897–911. doi: 10.1039/C9BM01394F. PubMed DOI

Li X., Du K., Sun J., Feng F.D. Apoferritin as a Carrier of Cu(II) Diethyldithiocarbamate and Biomedical Application for Glutathione-Responsive Combination Chemotherapy. ACS Appl. Bio Mater. 2020;3:654–663. doi: 10.1021/acsabm.9b01014. PubMed DOI

MacKenzie E.L., Iwasaki K., Tsuji Y. Intracellular iron transport and storage: From molecular mechanisms to health implications. Antioxid. Redox Signal. 2008;10:997–1030. doi: 10.1089/ars.2007.1893. PubMed DOI PMC

Sindhwani S., Syed A.M., Ngai J., Kingston B.R., Maiorino L., Rothschild J., MacMillan P., Zhang Y.W., Rajesh N.U., Hoang T., et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020;19:566–575. doi: 10.1038/s41563-019-0566-2. PubMed DOI

de Lazaro I., Mooney D.J. A nanoparticle’s pathway into tumours. Nat. Mater. 2020;19:486–487. doi: 10.1038/s41563-020-0669-9. PubMed DOI

Oh J.Y., Kim H.S., Palanikumar L., Go E.M., Jana B., Park S.A., Kim H.Y., Kim K., Seo J.K., Kwak S.K., et al. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat. Commun. 2018;9:1–9. doi: 10.1038/s41467-018-06979-4. PubMed DOI PMC

Papi M., Caputo D., Palmieri V., Coppola R., Palchetti S., Bugli F., Martini C., Digiacomo L., Pozzi D., Caracciolo G. Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale. 2017;9:10327–10334. doi: 10.1039/C7NR03042H. PubMed DOI

Pattipeiluhu R., Crielaard S., Klein-Schiphorst I., Florea B.I., Kros A., Campbell F. Unbiased Identification of the Liposome Protein Corona using Photoaffinity-based Chemoproteomics. ACS Cent. Sci. 2020;6:535–545. doi: 10.1021/acscentsci.9b01222. PubMed DOI PMC

Ritz S., Schottler S., Kotman N., Baier G., Musyanovych A., Kuharev J., Landfester K., Schild H., Jahn O., Tenzer S., et al. Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake. Biomacromolecules. 2015;16:1311–1321. doi: 10.1021/acs.biomac.5b00108. PubMed DOI

Zhang Z., Guan J., Jiang Z.X., Yang Y., Liu J.C., Hua W., Mao Y., Li C., Lu W.Y., Qian J., et al. Brain-targeted drug delivery by manipulating protein corona functions. Nat. Commun. 2019;10:1–11. doi: 10.1038/s41467-019-11593-z. PubMed DOI PMC

Elechalawar C.K., Hossen M.N., McNally L., Bhattacharya R., Mukherjee P. Analysing the nanoparticle-protein corona for potential molecular target identification. J. Control. Release. 2020;322:122–136. doi: 10.1016/j.jconrel.2020.03.008. PubMed DOI PMC

Giulimondi F., Digiacomo L., Pozzi D., Palchetti S., Vulpis E., Capriotti A.L., Chiozzi R.Z., Lagana A., Amenitsch H., Masuelli L., et al. Interplay of protein corona and immune cells controls blood residency of liposomes. Nat. Commun. 2019;10:1–11. doi: 10.1038/s41467-019-11642-7. PubMed DOI PMC

Wehbe M., Anantha M., Backstrom I., Leung A., Chen K., Malhotra A., Edwards K., Bally M.B. Nanoscale Reaction Vessels Designed for Synthesis of Copper-Drug Complexes Suitable for Preclinical Development. PLoS ONE. 2016;11:e0153416. doi: 10.1371/journal.pone.0153416. PubMed DOI PMC

Hartwig F., Koll-Weber M., Suss R. Preclinical In Vitro Studies with 3D Spheroids to Evaluate Cu(DDC)2 Containing Liposomes for the Treatment of Neuroblastoma. Pharmaceutics. 2021;13:894. doi: 10.3390/pharmaceutics13060894. PubMed DOI PMC

Gouda A., Sakr O.S., Nasr M., Sammour O. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J. Drug Deliv. Sci. Technol. 2021;61:102174. doi: 10.1016/j.jddst.2020.102174. DOI

Jaafar-Maalej C., Diab R., Andrieu V., Elaissari A., Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J. Liposome Res. 2010;20:228–243. doi: 10.3109/08982100903347923. PubMed DOI

Meeth K., Wang J.X., Micevic G., Damsky W., Bosenberg M.W. The YUMM lines: A series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment. Cell Melanoma Res. 2016;29:590–597. doi: 10.1111/pcmr.12498. PubMed DOI PMC

Wang J., Perry C.J., Meeth K., Thakral D., Damsky W., Micevic G., Kaech S., Blenman K., Bosenberg M. UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model. Pigment. Cell Melanoma Res. 2017;30:428–435. doi: 10.1111/pcmr.12591. PubMed DOI PMC

Hayashi Y., Takamiya M., Jensen P.B., Ojea-Jimenez I., Claude H., Antony C., Kjaer-Sorensen K., Grabher C., Boesen T., Gilliland D., et al. Differential Nanoparticle Sequestration by Macrophages and Scavenger Endothelial Cells Visualized in Vivo in Real-Time and at Ultrastructural Resolution. ACS Nano. 2020;14:1665–1681. doi: 10.1021/acsnano.9b07233. PubMed DOI

Tripuramallu S., Suthakaran R. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening for Some Pyrazole-Quinazoline Derivatives. Indo Am. J. Pharm. Sci. 2018;5:16606–16611. doi: 10.5281/zenodo.2443347. DOI

Vichai V., Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006;1:1112–1116. doi: 10.1038/nprot.2006.179. PubMed DOI

Marengo A., Forciniti S., Dando I., Dalla Pozza E., Stella B., Tsapis N., Yagoubi N., Fanelli G., Fattal E., Heeschen C., et al. Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes. Biochim. Biophys. Acta-Gen. Subj. 2019;1863:61–72. doi: 10.1016/j.bbagen.2018.09.018. PubMed DOI

Guang M.H.Z., Kavanagh E.L., Dunne L.P., Dowling P., Zhang L., Lindsay S., Bazou D., Goh C.Y., Hanley C., Bianchi G., et al. Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis. Cancers. 2019;11:66. doi: 10.3390/cancers11010066. PubMed DOI PMC

Miller S.E., Mathiasen S., Bright N.A., Pierre F., Kelly B.T., Kladt N., Schauss A., Merrifield C.J., Stamou D., Honing S., et al. CALM Regulates Clathrin-Coated Vesicle Size and Maturation by Directly Sensing and Driving Membrane Curvature. Dev. Cell. 2015;33:163–175. doi: 10.1016/j.devcel.2015.03.002. PubMed DOI PMC

Pelt J., Busatto S., Ferrari M., Thompson E.A., Mody K., Wolfram J. Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol. Ther. 2018;191:43–49. doi: 10.1016/j.pharmthera.2018.06.007. PubMed DOI PMC

Rodal S.K., Skretting G., Garred O., Vilhardt F., van Deurs B., Sandvig K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell. 1999;10:961–974. doi: 10.1091/mbc.10.4.961. PubMed DOI PMC

Vercauteren D., Vandenbroucke R.E., Jones A.T., Rejman J., Demeester J., De Smedt S.C., Sanders N.N., Braeckmans K. The Use of Inhibitors to Study Endocytic Pathways of Gene Carriers: Optimization and Pitfalls. Mol. Ther. 2010;18:561–569. doi: 10.1038/mt.2009.281. PubMed DOI PMC

Bulbake U., Doppalapudi S., Kommineni N., Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 2017;9:12. doi: 10.3390/pharmaceutics9020012. PubMed DOI PMC

Pochapski D.J., Carvalho Dos Santos C., Leite G.W., Pulcinelli S.H., Santilli C.V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir. 2021;37:13379–13389. doi: 10.1021/acs.langmuir.1c02056. PubMed DOI

Strauss G., Hauser H. Stabilization of Lipid Bilayer Vesicles by Sucrose during Freezing. Proc. Natl. Acad. Sci. USA. 1986;83:2422–2426. doi: 10.1073/pnas.83.8.2422. PubMed DOI PMC

Daraee H., Etemadi A., Kouhi M., Alimirzalu S., Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016;44:381–391. doi: 10.3109/21691401.2014.953633. PubMed DOI

Sou K., Tsuchida E. Electrostatic interactions and complement activation on the surface of phospholipid vesicle containing acidic lipids: Effect of the structure of acidic groups. Biochim. Et Biophys. Acta-Biomembr. 2008;1778:1035–1041. doi: 10.1016/j.bbamem.2008.01.006. PubMed DOI

Bai X., Wang J.L., Mu Q.X., Su G.X. In vivo Protein Corona Formation: Characterizations, Effects on Engineered Nanoparticles’ Biobehaviors, and Applications. Front. Bioeng. Biotechnol. 2021;9:263. doi: 10.3389/fbioe.2021.646708. PubMed DOI PMC

Settanni G., Zhou J.J., Suo T.C., Schottler S., Landfester K., Schmid F., Mailander V. Protein corona composition of poly(ethylene glycol)- and poly(phosphoester)-coated nanoparticles correlates strongly with the amino acid composition of the protein surface. Nanoscale. 2017;9:2138–2144. doi: 10.1039/C6NR07022A. PubMed DOI

Zani I.A., Stephen S.L., Mughal N.A., Russell D., Homer-Vanniasinkam S., Wheatcroft S.B., Ponnambalam S. Scavenger receptor structure and function in health and disease. Cells. 2015;4:178–201. doi: 10.3390/cells4020178. PubMed DOI PMC

Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC

Simon J., Kuhn G., Fichter M., Gehring S., Landfester K., Mailander V. Unraveling the In Vivo Protein Corona. Cells. 2021;10:132. doi: 10.3390/cells10010132. PubMed DOI PMC

Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC

Canton J., Khezri R., Glogauer M., Grinstein S. Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages. Mol. Biol. Cell. 2014;25:3330–3341. doi: 10.1091/mbc.e14-05-0967. PubMed DOI PMC

Naufer A., Hipolito V.E.B., Ganesan S., Prashar A., Zaremberg V., Botelho R.J., Terebiznik M.R. pH of endophagosomes controls association of their membranes with Vps34 and Ptdlns(3)P levels. J. Cell Biol. 2018;214:329–346. doi: 10.1083/jcb.201702179. PubMed DOI PMC

Le Poole I.C., van den Wijngaard R.M., Westerhof W., Verkruisen R.P., Dutrieux R.P., Dingemans K.P., Das P.K. Phagocytosis by normal human melanocytes in vitro. Exp. Cell Res. 1993;205:388–395. doi: 10.1006/excr.1993.1102. PubMed DOI

Pan M., Zheng Q., Yu Y., Ai H., Xie Y., Zeng X., Wang C., Liu L., Zhao M. Seesaw conformations of Npl4 in the human p97 complex and the inhibitory mechanism of a disulfiram derivative. Nat. Commun. 2021;12:121. doi: 10.1038/s41467-020-20359-x. PubMed DOI PMC

Reczek C.R., Chandel N.S. The Two Faces of Reactive Oxygen Species in Cancer. Annu. Rev. Cancer Biol. 2017;1:79–98. doi: 10.1146/annurev-cancerbio-041916-065808. DOI

Watson I.R., Wu C.J., Gershenwald J.E., Chin L., Grp M.A.W., Network C.G.A.R. Comprehensive genomic characterization of cutaneous melanoma. Cancer Res. 2014;74:e63597. doi: 10.1158/1538-7445.Am2014-Lb-315. DOI

Wong S.Q., Li J., Salemi R., Sheppard K.E., Do H.D., Tothill R.W., McArthur G.A., Dobrovic A. Targeted-capture massively-parallel sequencing enables robust detection of clinically informative mutations from formalin-fixed tumours. Sci. Rep. 2013;3:1–10. doi: 10.1038/srep03494. PubMed DOI PMC

Bennie L.A., McCarthy H.O., Coulter J.A. Enhanced nanoparticle delivery exploiting tumour-responsive formulations. Cancer Nanotechnol. 2018;9:1–20. doi: 10.1186/s12645-018-0044-6. PubMed DOI PMC

Shi Y., Van der Meel R., Chen X.Y., Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10:7921–7924. doi: 10.7150/thno.49577. PubMed DOI PMC

Immordino M.L., Dosio F., Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed. 2006;1:297–315. PubMed PMC

Kingston B.R., Lin Z.P., Ouyang B., MacMillan P., Ngai J., Syed A.M., Sindhwani S., Chan W.C.W. Specific Endothelial Cells Gouvern Nanoparticle Entry into Solid Tumors. ACS Nano. 2021;15:14080–14094. doi: 10.1021/acsnano.1c04510. PubMed DOI

Bitto-Dotan R., Bohrisch J., Schmidt C., Tsuriel M., Tulichala R.N.P., Breuer E., Reich R., Hoffman A., Strosberg J. The Effect of Chemical Modifications of Chitosan on Intestinal Permeability and Oral Bioavailability of Carbamoylphosphonate JS403. J. Bioequiv. Availab. 2020;12:392. doi: 10.35248/0975-0851.20.12.392. DOI

Arvizo R.R., Miranda O.R., Moyano D.F., Walden C.A., Giri K., Bhattacharya R., Robertson J.D., Rotello V.M., Reid J.M., Mukherjee P. Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles. PLoS ONE. 2011;6:e24374. doi: 10.1371/journal.pone.0024374. PubMed DOI PMC

Guerrini L., Alvarez-Puebla R.A., Pazos-Peres N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials. 2018;11:1154. doi: 10.3390/ma11071154. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...