Brain Fluid Channels for Metabolite Removal
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35344669
PubMed Central
PMC9150552
DOI
10.33549/physiolres.934802
PII: 934802
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- kinetika MeSH
- lidé MeSH
- mícha * MeSH
- mozek * fyziologie MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The adult human brain represents only 2% of the body's total weight, however it is one of the most metabolically active organs in the mammalian body. Its high metabolic activity necessitates an efficacious waste clearance system. Besides the blood, there are two fluids closely linked to the brain and spinal cord drainage system: interstitial fluid (ISF) and cerebrospinal fluid (CSF). The aim of this review is to summarize the latest research clarifying the channels of metabolite removal by fluids from brain tissue, subarachnoid space (SAS) and brain dura (BD). Special attention is focused on lymphatic vascular structures in the brain dura, their localizations within the meninges, morphological properties and topographic anatomy. The review ends with an account of the consequences of brain lymphatic drainage failure. Knowledge of the physiological state of the clearance system is crucial in order to understand the changes related to impaired brain drainage.
Zobrazit více v PubMed
Syková E, Nicholson C. Diffusion in Brain Extracellular Space. Physiol Rev. 2008;88(4):1277–1340. doi: 10.1152/physrev.00027.2007. PubMed DOI PMC
Bradbury MW. Physiopathology of the blood-brain barrier. Adv Exp Med Biol. 1976;69:507–516. doi: 10.1007/978-1-4684-3264-0_37. PubMed DOI
Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol (Berl) 2009;117(1):1–14. doi: 10.1007/s00401-008-0457-0. PubMed DOI
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Sci Transl Med. 2012;4(147):147ra111. doi: 10.1126/scitranslmed.3003748. PubMed DOI PMC
Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–999. doi: 10.1084/jem.20142290. PubMed DOI PMC
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatics. Nature. 2015;523(7560):337–341. doi: 10.1038/nature14432. PubMed DOI PMC
Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, Palisoc M, Louveau A, Zaghloul KA, Pittaluga S, Kipnis J, Reich DS. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. eLife. 2017:6. doi: 10.7554/eLife.29738. PubMed DOI PMC
Howell MD, Gottschall PE. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment. Neuroscience. 2012;217:6–18. doi: 10.1016/j.neuroscience.2012.05.034. PubMed DOI PMC
Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10. doi: 10.1186/2045-8118-11-10. PubMed DOI PMC
Lei Y, Han H, Yuan F, Javeed A, Zhao Y. The brain interstitial system: Anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol. 2017;157:230–246. doi: 10.1016/j.pneurobio.2015.12.007. PubMed DOI
Shetty AK, Zanirati G. The Interstitial System of the Brain in Health and Disease. Aging Dis. 2020;11(1):200–211. doi: 10.14336/AD.2020.0103. PubMed DOI PMC
Brasnjevic I, Steinbusch HWM, Schmitz C, Martinez-Martinez P European NanoBioPharmaceutics Research Initiative. Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol. 2009;87(4):212–251. doi: 10.1016/j.pneurobio.2008.12.002. PubMed DOI
Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45(4):545–552. doi: 10.1016/j.neuint.2003.11.006. PubMed DOI
Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a ‘Paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326(1):47–63. doi: 10.1016/0006-8993(85)91383-6. PubMed DOI
Khasawneh AH, Garling RJ, Harris CA. Cerebrospinal fluid circulation: What do we know and how do we know it? Brain Circ. 2018;4(1):14–18. doi: 10.4103/bc.bc_3_18. PubMed DOI PMC
Brodbelt MA, Stoodley M. CSF pathways: a review. Br J Neurosurg. 2007;21(5):510–520. doi: 10.1080/02688690701447420. PubMed DOI
Oresković D, Klarica M. The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev. 2010;64(2):241–262. doi: 10.1016/j.brainresrev.2010.04.006. PubMed DOI
Damkier HH, Brown PD, Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev. 2013;93(4):1847–1892. doi: 10.1152/physrev.00004.2013. PubMed DOI
Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner’s Guide. Neurochem Res. 2015;40(12):2583–2599. doi: 10.1007/s11064-015-1581-6. PubMed DOI PMC
Barshes N, Demopoulos A, Engelhard HH. Anatomy and physiology of the leptomeninges and CSF space. Cancer Treat Res. 2005;125:1–16. doi: 10.1007/0-387-24199-x_1. PubMed DOI
Milhorat TH. The third circulation revisited. J Neurosurg. 1975;42(6):628–645. doi: 10.3171/jns.1975.42.6.0628. PubMed DOI
Proescholdt MG, Hutto B, Brady LS, Herkenham M. Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14C]inulin in rat. Neuroscience. 2000;95(2):577–592. doi: 10.1016/s0306-4522(99)00417-0. PubMed DOI
Zhang ET, Inman CB, Weller RO. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990;170:111–123. PubMed PMC
Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 2012;33(12):579–589. doi: 10.1016/j.it.2012.07.004. PubMed DOI
Natale G, Limanaqi F, Busceti CL, Mastroiacovo F, Nicoletti F, Puglisi-Allegra S, Fornai F. Glymphatic System as a Gateway to Connect Neurodegeneration From Periphery to CNS. Front Neurosci. 2021:15. doi: 10.3389/fnins.2021.639140. PubMed DOI PMC
Bacyinski A, Xu M, Wang W, Hu J. The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy. Front Neuroanat. 2017;11:101. doi: 10.3389/fnana.2017.00101. PubMed DOI PMC
Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci. 2021;78(6):2429–2457. doi: 10.1007/s00018-020-03706-5. PubMed DOI PMC
Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34(2):131–144. doi: 10.1111/j.1365-2990.2007.00926.x. PubMed DOI
Morris AWJ, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Werma A, Weller RO, Carare RO. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol (Berl) 2016;131:725–736. doi: 10.1007/s00401-016-1555-z. PubMed DOI PMC
Ueno M, Chiba Y, Murakami R, Matsumoto K, Kawauchi M, Fujihara R. Blood-brain barrier and blood-cerebrospinal fluid barrier in normal and pathological conditions. Brain Tumor Pathol. 2016;33(2):89–96. doi: 10.1007/s10014-016-0255-7. PubMed DOI
Albargothy NJ, Johnston DA, MacGregor-Sharp M, Weller RO, Werma A, Hawkes CA, Carare RO. Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol (Berl) 2018;136(1):139–152. doi: 10.1007/s00401-018-1862-7. PubMed DOI PMC
Carare RO, Aldea R, Agarwal N, Bacskai BJ, Bechman I, Boche D, Bu G, Bulters D, Clemens A, Counts SE, de Leon M, et al. Clearance of interstitial fluid (ISF) and CSF (CLIC) group—part of Vascular Professional Interest Area (PIA) Alzheimers Dement Diagn Assess Dis Monit. 2020;12(1):e12053. doi: 10.1002/dad2.12053. PubMed DOI PMC
Bakker ENTP, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AWJ, Weller RO, Carare RO. Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases. Cell Mol Neurobiol. 2016;36(2):181–194. doi: 10.1007/s10571-015-0273-8. PubMed DOI PMC
Bedussi B, van Lier MGJTB, Bartstra JW, de Vos J, Siebes M, Van Bavel E, Bakker ENTP. Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system. Fluids Barriers CNS. 2015;12:23. doi: 10.1186/s12987-015-0019-5. PubMed DOI PMC
Chen L, Elias G, Yostos MP, Stimec B, Fasel J, Murphy K. Pathways of cerebrospinal fluid outflow: a deeper understanding of resorption. Neuroradiology. 2015;57(2):139–147. doi: 10.1007/s00234-014-1461-9. PubMed DOI
Pollay M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res. 2010;7:9. doi: 10.1186/1743-8454-7-9. PubMed DOI PMC
Papadopoulos Z, Herz J, Kipnis J. Meningeal lymphatics: from anatomy to central nervous system immune surveillance. J Immunol. 2020;204(2):286–293. doi: 10.4049/jimmunol.1900838. PubMed DOI PMC
Quintana FJ. Astrocytes to the rescue! Glia limitans astrocytic endfeet control CNS inflammation. J Clin Invest. 2017;127(8):2897–2899. doi: 10.1172/JCI95769. PubMed DOI PMC
Bucchieri F, Farina F, Zummo G, Cappello F. Lymphatic vessels of the dura mater: a new discovery? J Anat. 2015;227(5):702–703. doi: 10.1111/joa.12381. PubMed DOI PMC
Lukić IK, Glunčić V, Ivkić G, Hubenstorf M, Marušić A. Virtual dissection: a lesson from the 18th century. The Lancet. 2003;362(9401):2110–2113. doi: 10.1016/S0140-6736(03)15114-8. PubMed DOI
Bower NI, Koltowska K, Pichol-Thievend C, Virshup I, Paterson S, Lagendijk AK, Wang W, Lindsey BW, Bent SJ, Baek S. Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish. Nat Neurosci. 2017;20(6):774–783. doi: 10.1038/nn.4558. PubMed DOI
Jung E, Gardner D, Choi D, et al. Development and Characterization of A Novel Prox1-EGFP Lymphatic and Schlemm’s Canal Reporter Rat. Sci Rep. 2017:7. doi: 10.1038/s41598-017-06031-3. PubMed DOI PMC
Rua R, McGavern DB. Advances in Meningeal Immunity. Trends Mol Med. 2018;24(6):542–559. doi: 10.1016/j.molmed.2018.04.003. PubMed DOI PMC
Raper D, Louveau A, Kipnis J. How do meningeal lymphatic vessels drain the CNS? Trends Neurosci. 2016;39(9):581–586. doi: 10.1016/j.tins.2016.07.001. PubMed DOI PMC
Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, Viar KE, Herod SG, Knopp J, Setliff JC, Lupi AL, Da Mesquita S, Frost EL, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21(10):1380–1391. doi: 10.1038/s41593-018-0227-9. PubMed DOI PMC
Alderfer L, Wei A, Hanjaya-Putra D. Lymphatic Tissue Engineering and Regeneration. J Biol Eng. 2018;12(1):32. doi: 10.1186/s13036-018-0122-7. PubMed DOI PMC
Petrova TV, Koh GY. Biological functions of lymphatic vessels. Science. 2020;369(6500):eaax4063. doi: 10.1126/science.aax4063. PubMed DOI
Ahn JH, Cho H, Kim JH, Kim SH, Ham JS, Park I, Suh SH, Hong SP, Song JH, Hong YK, Jeong Y, Park SH, Koh GY. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 2019;572(7767):62–66. doi: 10.1038/s41586-019-1419-5. PubMed DOI
Cheng Y, Wang YJ. Meningeal lymphatic vessels: a drain of the brain involved in neurodegeneration? Neurosci Bull. 2020;36(5):557–560. doi: 10.1007/s12264-019-00456-8. PubMed DOI PMC
Hershenhouse KS, Shauly O, Gould DJ, Patel KM. Meningeal lymphatics: a review and future directions from a clinical perspective. Neurosci Insights. 2019;14:1179069519889027. doi: 10.1177/1179069519889027. PubMed DOI PMC
Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen MH, Mathivet T, Chilov D, Li Z, Koppinen T, Park JH, Fang S, Aspelund A, Saarma M, Eichmann A, Thomas JL, Alitalo K. Development and plasticity of meningeal lymphatic vessels. J Exp Med. 2017;214(12):3645–3667. doi: 10.1084/jem.20170391. PubMed DOI PMC
Lohrberg M, Wilting J. The lymphatic vascular system of the mouse head. Cell Tissue Res. 2016;366(3):667–677. doi: 10.1007/s00441-016-2493-8. PubMed DOI PMC
Ma Q, Schlegel F, Bachmann SB, Schneider H, Decker Y, Rudin M, Weller M, Proulx ST, Detmar M. Lymphatic outflow of cerebrospinal fluid is reduced in glioma. Sci Rep. 2019;9:14815. doi: 10.1038/s41598-019-51373-9. PubMed DOI PMC
Koh L, Zakharov A, Johnston M. Integration of the subarachnoid space and lymphatics: is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res. 2005;2:6. doi: 10.1186/1743-8454-2-6. PubMed DOI PMC
Kuo PH, Stuehm C, Squire S, Johnson K. Meningeal Lymphatic Vessel Flow Runs Countercurrent to Venous Flow in the Superior Sagittal Sinus of the Human Brain. Tomogr Ann Arbor Mich. 2018;4(3):99–104. doi: 10.18383/j.tom.2018.00013. PubMed DOI PMC
Brunori A, Vagnozzi R, Giuffrè R. Antonio Pacchioni (1665-1726): early studies of the dura mater. J Neurosurg. 1993;78(3):515–518. doi: 10.3171/jns.1993.78.3.0515. PubMed DOI
Maloveska M, Danko J, Petrovova E, Kresakova L, Vdoviakova K, Michalicova A, Kovac A, Cubinkova V, Cizkova D. Dynamics of Evans blue clearance from cerebrospinal fluid into meningeal lymphatic vessels and deep cervical lymph nodes. Neurol Res. 2018;40(5):372–380. doi: 10.1080/01616412.2018.1446282. PubMed DOI
Kutomi O, Takeda S. Identification of lymphatic endothelium in cranial arachnoid granulation-like dural gap. Microsc Oxf Engl. 2020;69(6):391–400. doi: 10.1093/jmicro/dfaa038. PubMed DOI
Pal S, Rao S, Louveau A. Meningeal lymphatic network: The middleman of neuroinflammation. Clin Exp Neuroimmunol. 2020;11(1):21–25. doi: 10.1111/cen3.12563. DOI
Frederick N, Louveau A. Meningeal lymphatics, immunity and neuroinflammation. Curr Opin Neurobiol. 2020;62:41–47. doi: 10.1016/j.conb.2019.11.010. PubMed DOI
Jaffe RJ, Dave RS, Byrareddy SN. Meningeal lymphatics in aging and Alzheimer’s disease. Ann Transl Med. 2019;7(Suppl 1):S2. doi: 10.21037/atm.2019.01.06. PubMed DOI PMC
Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D, et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature. 2018;560(7717):185–191. doi: 10.1038/s41586-018-0368-8. PubMed DOI PMC
Jakic B, Kerjaschki D, Wick G. Lymphatic Capillaries in Aging. Gerontology. 2020;66(5):419–426. doi: 10.1159/000508459. PubMed DOI
Filelfi SL, Onorato A, Brix B, Goswami N. Lymphatic Senescence: Current Updates and Perspectives. Biology. 2021;10(4):293. doi: 10.3390/biology10040293. PubMed DOI PMC
Bostancıklıoğlu M. SARS-CoV2 entry and spread in the lymphatic drainage system of the brain. Brain Behav Immun. 2020;87:122–123. doi: 10.1016/j.bbi.2020.04.080. PubMed DOI PMC
Wostyn P. COVID-19 and chronic fatigue syndrome: Is the worst yet to come? Med Hypotheses. 2021;146:110469. doi: 10.1016/j.mehy.2020.110469. PubMed DOI PMC