Potential protective effect of puncturevine (Tribulus terrestris, L.) against xylene toxicity on bovine ovarian cell functions
Language English Country Czech Republic Media print-electronic
Document type Journal Article
PubMed
35344671
PubMed Central
PMC9150559
DOI
10.33549/physiolres.934871
PII: 934871
Knihovny.cz E-resources
- MeSH
- Apoptosis MeSH
- Granulosa Cells MeSH
- Insulin-Like Growth Factor I metabolism MeSH
- Cells, Cultured MeSH
- Progesterone metabolism MeSH
- Cell Proliferation MeSH
- Cattle MeSH
- Testosterone metabolism MeSH
- Tribulus * metabolism MeSH
- Xylenes metabolism pharmacology MeSH
- Animals MeSH
- Check Tag
- Cattle MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Insulin-Like Growth Factor I MeSH
- Progesterone MeSH
- Testosterone MeSH
- Xylenes MeSH
The action of the medicinal plant Tribulus terrestris (TT) on bovine ovarian cell functions, as well as the protective potential of TT against xylene (X) action, remain unknown. The aim of the present in vitro study was to elucidate the influence of TT, X and their combination on basic bovine ovarian cell functions. For this purpose, we examined the effect of TT (at doses of 0, 1, 10, and 100 ng/mL), X (at 20 ?g/mL) and the combination of TT + X (at these doses) on proliferation, apoptosis and hormone release by cultured bovine ovarian granulosa cells. Markers of proliferation (accumulation of PCNA), apoptosis (accumulation of Bax) and the release of hormones (progesterone, testosterone and insulin-like growth factor I, IGF-I) were analyzed by quantitative immunocytochemistry and RIA, respectively. TT addition was able to stimulate proliferation and testosterone release and inhibit apoptosis and progesterone output. The addition of X alone stimulated proliferation, apoptosis and IGF-I release and inhibited progesterone and testosterone release by ovarian cells. TT was able to modify X effects: it prevented the antiproliferative effect of X, induced the proapoptotic action of X, and promoted X action on progesterone but not testosterone or IGF-I release. Taken together, our observations represent the first demonstration that TT can be a promoter of ovarian cell functions (a stimulator of proliferation and a suppressor of apoptosis) and a regulator of ovarian steroidogenesis. X can increase ovarian cell proliferation and IGF-I release and inhibit ovarian steroidogenesis. These effects could explain its anti-reproductive and cancer actions. The ability of TT to modify X action on proliferation and apoptosis indicates that TT might be a natural protector against some ovarian cell disorders associated with X action on proliferation and apoptosis, but it can also promote its adverse effects on progesterone release.
See more in PubMed
Lorand T, Vigh E, Garai J. Hormonal action of plant derived and anthropogenic non-steroidal estrogenic compounds: phytoestrogens and xenoestrogens. Curr Med Chem. 2010;17(30):3542–3574. doi: 10.2174/092986710792927813. PubMed DOI
Chhatre S, Nesari T, Somani G, Kanchan D, Sathaye S. Phytopharmacological overview of Tribulus terrestris. Pharmacogn Rev. 2014;8(15):45. doi: 10.4103/0973-7847.125530. PubMed DOI PMC
Shahid M, Riaz M, Talpur M, Pirzada T. Phytopharmacology of Tribulus terrestris. J Biol Regul Homeost Agents. 2016;30(3):785–788. PubMed
Abarikwu SO, Onuah CL, Singh SK. Plants in the management of male infertility. Andrologia. 2020;52(3):e13509. doi: 10.1111/and.13509. PubMed DOI
Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Nur H, Ismail AF, Sharif S, RamaKrishna S, Berto F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants. 2020;9(12):1309. doi: 10.3390/antiox9121309. PubMed DOI PMC
Verma T, Sinha M, Bansal N, Yadav SR, Shah K, Chauhan NS. Plants used as antihypertensive. Nat Product Bioprospecting. 2021;11(2):155–184. doi: 10.1007/s13659-020-00281-x. PubMed DOI PMC
Sharma I, Khan W, Ahmad S. In vitro and ex vivo approach for anti-urolithiatic potential of bioactive fractions of gokhru with simultaneous HPLC analysis of six major metabolites and their exploration in rat plasma. Pharm Biol. 2017;55(1):701–711. doi: 10.1080/13880209.2016.1266671. PubMed DOI PMC
Adaay M, Mosa A. Evaluation of the effect of aqueous extract of Tribulus terrestris on some reproductive parameters in female mice. J Mater Environ Sci. 2012;3(6):1153–1162.
Esfandiari A, Dehghan A, Sharifi S, Najafi B, Vesali E. Effect of Tribulus terrestris extract on ovarian activity in immature Wistar rat: a histological evaluation. J Anim Vet Adv. 2011;10(7):883–886. doi: 10.3923/javaa.2011.883.886. DOI
Saiyed A, Jahan N, Makbul SAA, Ansari M, Bano H, Habib SH. Effect of combination of Withania somnifera Dunal and Tribulus terrestris Linn on letrozole induced polycystic ovarian syndrome in rats. Integrative medicine research. 2016;5(4):293–300. doi: 10.1016/j.imr.2016.10.002. PubMed DOI PMC
Martimbianco ALC, Pacheco RL, Vilarino FL, Latorraca CdOC, Torloni MR, Riera R. Tribulus terrestris for female sexual dysfunction: a systematic review. Rev Bras Ginecol Obstet. 2020;42:427–435. doi: 10.1055/s-0040-1712123. PubMed DOI PMC
Sirotkin AV, Alexa R, Harrath AH. Puncturevine (Tribulus terrestris L.) affects the proliferation, apoptosis, and ghrelin response of ovarian cells. Reprod Biol. 2020;20(1):33–36. doi: 10.1016/j.repbio.2019.12.009. PubMed DOI
Sandeep PM, Bovee TF, Sreejith K. Anti-androgenic activity of Nardostachys jatamansi DC and Tribulus terrestris L. and their beneficial effects on polycystic ovary syndrome-Induced rat models. Metab Syndr Relat Disord. 2015;13(6):248–254. doi: 10.1089/met.2014.0136. PubMed DOI
Sirotkin AV, Harrath AH. Phytoestrogens and their effects. Eur J Pharmacol. 2014;741:230–236. doi: 10.1016/j.ejphar.2014.07.057. PubMed DOI
Neychev V, Nikolova E, Zhelev N, Mitev V. Saponins from Tribulus terrestris L. are less toxic for normal human fibroblasts than for many cancer lines: Influence on apoptosis and proliferation. Exp Biol Med. 2007;232(1):126–133. PubMed
Dehghan A, Esfandiari A, Bigdeli SM. Alternative treatment of ovarian cysts with Tribulus terrestris extract: a rat model. Reprod Domest Anim. 2012;47(1):e12–e15. doi: 10.1111/j.1439-0531.2011.01877.x. PubMed DOI
Ghanbari A, Akhshi N, Nedaei SE, Mollica A, Aneva IY, Qi Y, Liao P, Darakhshan S, Farzaei MH, Xiao J. Tribulus terrestris and female reproductive system health: A comprehensive review. Phytomedicine. 2021:153462. doi: 10.1016/j.phymed.2021.153462. PubMed DOI
Arentz S, Abbott JA, Smith CA, Bensoussan A. Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo/amenorrhoea and hyperandrogenism; a review of the laboratory evidence for effects with corroborative clinical findings. BMC Complement Altern Med. 2014;14(1):1–19. doi: 10.1186/1472-6882-14-511. PubMed DOI PMC
Sirotkin AV, Harrath AH. Influence of oil-related environmental pollutants on female reproduction. Reprod Toxicol. 2017;71:142–145. doi: 10.1016/j.reprotox.2017.05.007. PubMed DOI
Ungváry G, Varga B, Horváth E, Tátrai E, Folly G. Study on the role of maternal sex steroid production and metabolism in the embryotoxicity of para-xylene. Toxicology. 1981;19(3):263–268. doi: 10.1016/0300-483X(81)90136-0. PubMed DOI
Sirotkin AV, Fabian D, Babel’ová J, Vlčková R, Alwasel S, Harrath AH. Metabolic state can define the ovarian response to environmental contaminants and medicinal plants. Appl Physiol Nutr Metab. 2017;42(12):1264–1269. doi: 10.1139/apnm-2017-0262. PubMed DOI
Sirotkin AV, Macejková M, Tarko A, Fabova Z, Alwasel S, Harrath AH. Buckwheat, rooibos, and vitex extracts can mitigate adverse effects of xylene on ovarian cells in vitro. Environ Sci Pollut Res. 2021;28(6):7431–7439. doi: 10.1007/s11356-020-11082-7. PubMed DOI
Tarko A, Štochmalova A, Hrabovszka S, Vachanova A, Harrath AH, Alwasel S, Grossman R, Sirotkin AV. Can xylene and quercetin directly affect basic ovarian cell functions? Res Vet Sci. 2018;119:308–312. doi: 10.1016/j.rvsc.2018.07.010. PubMed DOI
Sirotkin AV, Alexa R, Alwasel S, Harrath AH. Fennel affects ovarian cell proliferation, apoptosis, and response to ghrelin. Physiol Res. 2021 Apr 30;70(2):237–243. doi: 10.33549/physiolres.934546. PubMed DOI PMC
Sirotkin AV, Harrath AH, Grossmann R. Metabolic status and ghrelin regulate plasma levels and release of ovarian hormones in layer chicks. Physiol Res. 2017 Mar 31;66(1):85–92. doi: 10.33549/physiolres.933306. PubMed DOI
Sirotkin AV, Kolesarova A. The anti-obesity and health-promoting effects of tea and coffee. Physiol Res. 2021 Apr 30;70(2):161–168. doi: 10.33549/physiolres.934674. PubMed DOI PMC
Sirotkin AV, Hrabovszká S, Štochmal’ová A, Grossmann R, Alwasel S, Harrath AH. Effect of quercetin on ovarian cells of pigs and cattle. Anim Reprod Sci. 2019;205:44–51. doi: 10.1016/j.anireprosci.2019.04.002. PubMed DOI
Sirotkin AV, Štochmal’ová A, Alexa R, Kadasi A, Bauer M, Grossmann R, Alrezaki A, Alwasel S, Harrath AH. Quercetin directly inhibits basal ovarian cell functions and their response to the stimulatory action of FSH. Eur J Pharmacol. 2019;860:172560. doi: 10.1016/j.ejphar.2019.172560. PubMed DOI
Osborn M, Brandfass S. Immunocytochemistry of frozen and of paraffin tissue sections. Cell biology Elsevier. 2006:563–569. doi: 10.1016/B978-012164730-8/50069-1. DOI
Makarevich A, Sirotkin A. Development of a sensitive radioimmunoassay for IGF-I determination in samples from blood plasma and cell-conditioned medium (in Czech) Veterinarni Medicina. 1999
Prakash B, Meyer H, Schallenberger E, Van de Wiel D. Development of a sensitive enzymeimmunoassay (EIA) for progesterone determination in unextracted bovine plasma using the second antibody technique. J Steroid Biochem. 1987;28(6):623–627. doi: 10.1016/0022-4731(87)90389-X. PubMed DOI
Münster E. Development of enzymatic-immunologic measuring techniques on micro-titration plates for determining testosterone and progesterone in the blood plasma. (in German) Universität Hohenheim; 1989.
Abid N. MSc. Thesis] Inst Emb Res and Infe Treat, Al-Nahrain University; Baghdad, Iraq: 2010. Effect of crude aqueous extract of Tribulus terrestris on some parameters of fertility in abino mice.
Hernández-Silva CD, Villegas-Pineda JC, Pereira-Suárez AL. Expression and role of the G protein-coupled estrogen receptor (GPR30/GPER) in the development and immune response in female reproductive cancers. Front Endocrinol (Lausanne) 2020:11. doi: 10.3389/fendo.2020.00544. PubMed DOI PMC
Arcidiacono B, Iiritano S, Nocera A, Possidente K, Nevolo MT, Ventura V, Foti D, Chiefari E, Brunetti A. Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms. Exp Diabetes Res. 2012:2012. doi: 10.1155/2012/789174. PubMed DOI PMC
Li J, Bao R, Peng S, Zhang C. The molecular mechanism of ovarian granulosa cell tumors. J Ovarian Res. 2018;11(1):1–8. doi: 10.1186/s13048-018-0384-1. PubMed DOI PMC
Perez-Fidalgo JA. Cell proliferation inhibitors and apoptosis promoters. Eur J Cancer Suppl. 2020;15:73–76. doi: 10.1016/j.ejcsup.2019.09.002. PubMed DOI PMC