A quarter of a century biomechanical rupture risk assessment of abdominal aortic aneurysms. Achievements, clinical relevance, and ongoing developments
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35347895
DOI
10.1002/cnm.3587
Knihovny.cz E-zdroje
- Klíčová slova
- abdominal aortic aneurysm, modeling, ruptuer risk assessment, vascular biomechanics,
- MeSH
- aneurysma břišní aorty * MeSH
- aorta abdominalis MeSH
- biomechanika MeSH
- hodnocení rizik MeSH
- klinická relevance MeSH
- lidé MeSH
- mechanický stres MeSH
- modely kardiovaskulární MeSH
- ruptura aorty * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Abdominal aortic aneurysm (AAA) disease, the local enlargement of the infrarenal aorta, is a serious condition that causes many deaths, especially in men exceeding 65 years of age. Over the past quarter of a century, computational biomechanical models have been developed towards the assessment of AAA risk of rupture, technology that is now on the verge of being integrated within the clinical decision-making process. The modeling of AAA requires a holistic understanding of the clinical problem, in order to set appropriate modeling assumptions and to draw sound conclusions from the simulation results. In this article we summarize and critically discuss the proposed modeling approaches and report the outcome of clinical validation studies for a number of biomechanics-based rupture risk indices. Whilst most of the aspects concerning computational mechanics have already been settled, it is the exploration of the failure properties of the AAA wall and the acquisition of robust input data for simulations that has the greatest potential for the further improvement of this technology.
Department of Applied Mechanics VSB Technical University of Ostrava Ostrava Poruba Czech Republic
Department of Engineering Mechanics KTH Royal Institute of Technology Stockholm Sweden
Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
Department of Vascular Surgery Karolinska University Hospital Stockholm Sweden
Faculty of Health Sciences University of Southern Denmark Odense Denmark
Zobrazit více v PubMed
Hoornweg LL, Storm-Versloot MN, Ubbink DT, Koelemay MJW, Legemate DA, Balm R. Meta analysis on mortality of ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2008;35(5):558-570. doi:10.1016/j.ejvs.2007.11.019
Wanhainen A, Verzini F, Van Herzeele I, et al. Editor's choice - European Society for Vascular Surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms. Eur J Vasc Endovasc Surg. 2019;57(1):8-93. doi:10.1016/j.ejvs.2018.09.020
Powell JT, Brady AR, Brown LC, et al. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. Lancet. 1998;352(9141):1649-1655. doi:10.1016/S0140-6736(98)10137-X
The UK Small Aneurysm Trial Participants. The U.K. small aneurysm trial: design, methods and progress. Eur J Vasc Endovasc Surg. 1995;9(1):42-48. doi:10.1016/S1078-5884(05)80223-0
Greenhalgh RM, Brown LC, Epstein D, et al. Endovascular aneurysm repair versus open repair in patients with abdominal aortic aneurysm (EVAR trial 1): randomized controlled trial. The Lancet. 2005;365(9478):2179-2186. doi:10.1016/S0140-6736(05)66627-5
Lederle FA, Johnson GR, Wilson SE, et al. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA. 2002;287(22):2968-2972. doi:10.1097/00132586-200306000-00032
Greenhalgh RM. Endovascular aneurysm repair and outcome in patients unfit for open repair of abdominal aortic aneurysm (EVAR trial 2): randomised controlled trial. Lancet. 2005;365(9478):2187-2192. doi:10.1016/S0140-6736(05)66628-7
Timmins LH, Wu Q, Yeh AT, Moore JE, Greenwald SE. Structural inhomogeneity and fiber orientation in the inner arterial media. Am J Physiol - Heart Circ Physiol. 2010;298(5):H1537-45. doi:10.1152/ajpheart.00891.2009
O'Connell MK, Murthy S, Phan S, et al. The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol. 2008;27(3):171-181. doi:10.1016/j.matbio.2007.10.008
Polzer S, Gasser TC, Novak K, et al. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue. Acta Biomater. 2015;14:133-145. doi:10.1016/j.actbio.2014.11.043
Rezakhaniha R, Agianniotis A, Schrauwen JTC, et al. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol. 2012;11(3-4):461-473. doi:10.1007/s10237-011-0325-z
Niestrawska JA, Viertler C, Regitnig P, Cohnert TU, Sommer G, Holzapfel GA. Microstructure and mechanics of healthy and aneurysmatic abdominal aortas: experimental analysis and modelling. J R Soc Interface. 2016;13(124):20160620. doi:10.1098/RSIF.2016.0620
Hill MR, Duan X, Gibson GA, Watkins S, Robertson AM. A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall. J Biomech. 2012;45(5):762-771. doi:10.1016/j.jbiomech.2011.11.016
Schrauwen JTC, Vilanova A, Rezakhaniha R, Stergiopulos N, van de Vosse FN, Bovendeerd PHM. A method for the quantification of the pressure dependent 3D collagen configuration in the arterial adventitia. J Struct Biol. 2012;180(2):335-342. doi:10.1016/j.jsb.2012.06.007
Gundiah N, Ratcliffe MB, Pruitt LA. The biomechanics of arterial elastin. J Mech Behav Biomed Mater. 2009;2(3):288-296. doi:10.1016/j.jmbbm.2008.10.007
Miyazaki H, Hayashi K. Tensile tests of collagen fibers obtained from the rabbit patellar tendon. Biomed Microdevices. 1999;2(2):151-157. doi:10.1023/A:1009953805658
Shen ZL, Dodge MR, Kahn H, Ballarini R, Eppell SJ. Stress-strain experiments on individual collagen fibrils. Biophys J. 2008;95(8):3956-3963. doi:10.1529/BIOPHYSJ.107.124602
Tang Y, Ballarini R, Buehler MJ, Eppell SJ. Deformation micromechanisms of collagen fibrils under uniaxial tension. J R Soc Interface. 2010;7(46):839-850. doi:10.1098/RSIF.2009.0390
Sakalihasan N, Michel JB, Katsargyris A, et al. Abdominal aortic aneurysms. Nat Rev Dis Primers. 2018;4(1):1-22.
Alexander JJ. The pathobiology of aortic aneurysms. J Surg Res. 2004;117(1):163-175. doi:10.1016/j.jss.2003.11.011
Kazi M, Thyberg J, Religa P, et al. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg. 2003;38(6):1283-1292. doi:10.1016/S0741-5214(03)00791-2
Choke E, Cockerill G, Wilson WRW, et al. A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg. 2005;30(3):227-244. doi:10.1016/j.ejvs.2005.03.009
Michel JB, Martin-Ventura JL, Egido J, et al. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc Res. 2011;90(1):18-27.
Bäck M, Gasser TC, Michel JB, Caligiuri G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc Res. 2013;99(2):232-241.
Mäyränpää MI, Trosien JA, Fontaine V, et al. Mast cells associate with neovessels in the media and adventitia of abdominal aortic aneurysms. J Vasc Surg. 2009;50(2):388-395. doi:10.1016/j.jvs.2009.03.055
Vorp DA, Lee PC, Wang DHJ, et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg. 2001;34(2):291-299. doi:10.1067/mva.2001.114813
Reeps C, Maier A, Pelisek J, et al. Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech Model Mechanobiol. 2013;12(4):717-733. doi:10.1007/s10237-012-0436-1
Gasser TC, Gallinetti S, Xing X, Forsell C, Swedenborg J, Roy J. Spatial orientation of collagen fibers in the abdominal aortic aneurysm's wall and its relation to wall mechanics. Acta Biomater. 2012;8(8):3091-3103. doi:10.1016/j.actbio.2012.04.044
Hans SS, Jareunpoon O, Balasubramaniam M, Zelenock GB. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J Vasc Surg. 2005;41(4):584-588. doi:10.1016/j.jvs.2005.01.004
Vande Geest JP, Sacks MS, Vorp DA. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J Biomech. 2006;39(13):2347-2354. doi:10.1016/j.jbiomech.2006.05.011
Gasser TC, Görgülü G, Folkesson M, Swedenborg J. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J Vasc Surg. 2008;48(1):179-188. doi:10.1016/j.jvs.2008.01.036
Biasetti J, Spazzini PG, Swedenborg J, Gasser TC. An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms. Front Physiol. 2012;3:266. doi:10.3389/fphys.2012.00266
Folkesson M, Silveira A, Eriksson P, Swedenborg J. Protease activity in the multi-layered intra-luminal thrombus of abdominal aortic aneurysms. Atherosclerosis. 2011;218(2):294-299. doi:10.1016/j.atherosclerosis.2011.05.002
Swedenborg J, Eriksson P. The intraluminal thrombus as a source of proteolytic activity. Ann N Y Acad Sci. 2006;1085:133-138. doi:10.1196/annals.1383.044
Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech. 2006;39(7):1324-1334. doi:10.1016/j.jbiomech.2005.03.003
Tong J, Cohnert T, Regitnig P, Holzapfel GA. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling. Eur J Vasc Endovasc Surg. 2011;42(2):207-219. doi:10.1016/j.ejvs.2011.02.017
O'Leary SA, Healey DA, Kavanagh EG, Walsh MT, McGloughlin TM, Doyle BJ. The biaxial biomechanical behavior of abdominal aortic aneurysm tissue. Ann Biomed Eng. 2014;42(12):2440-2450. doi:10.1007/s10439-014-1106-5
O'Leary SA, Kavanagh EG, Grace PA, McGloughlin TM, Doyle BJ. The biaxial mechanical behaviour of abdominal aortic aneurysm intraluminal thrombus: classification of morphology and the determination of layer and region specific properties. J Biomech. 2014;47(6):1430-1437. doi:10.1016/j.jbiomech.2014.01.041
Erhart P, Grond-Ginsbach C, Hakimi M, et al. Finite element analysis of abdominal aortic aneurysms: predicted rupture risk correlates with aortic wall histology in individual patients. J Endovasc Ther. 2014;21(4):556-564. doi:10.1583/14-4695.1
Raghavan ML, Vorp DA. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech. 2000;33(4):475-482. doi:10.1016/S0021-9290(99)00201-8
Martufi G, Gasser TC. Turnover of fibrillar collagen in soft biological tissue with application to the expansion of abdominal aortic aneurysms. J R Soc Interface. 2012;9(77):3366-3377. doi:10.1098/RSIF.2012.0416
Martufi G, Di Martino ES, Amon CH, Muluk SC, Finol EA. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J Biomech Eng. 2009;131(6):1-11. doi:10.1115/1.3127256
Shum J, Dimartino ES, Goldhammer A, et al. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med Phys. 2010;37(2):638-648. doi:10.1118/1.3284976
Raghavan ML, Kratzberg J, Castro de Tolosa EM, Hanaoka MM, Walker P, da Silva ES. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J Biomech. 2006;39(16):3010-3016. doi:10.1016/j.jbiomech.2005.10.021
Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc Surg. 2010;40(2):176-185. doi:10.1016/j.ejvs.2010.04.003
Auer M, Gasser TC. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Trans Med Imaging. 2010;29(4):1022-1028. doi:10.1109/TMI.2009.2039579
Vande Geest JP, Wang DHJ, Wisniewski SR, Makaroun MS, Vorp DA. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng. 2006;34(7):1098-1106. doi:10.1007/s10439-006-9132-6
Biehler J, Kehl S, Gee MW, et al. Probabilistic noninvasive prediction of wall properties of abdominal aortic aneurysms using Bayesian regression. Biomech Model Mechanobiol. 2017;16(1):45-61. doi:10.1007/s10237-016-0801-6
Martufi G, Satriano A, Moore RD, Vorp DA, Di Martino ES. Local quantification of wall thickness and intraluminal thrombus offer insight into the mechanical properties of the aneurysmal aorta. Ann Biomed Eng. 2015;43(8):1759-1771. doi:10.1007/s10439-014-1222-2
Thubrikar MJ, Labrosse M, Robicsek F, Al-Soudi J, Fowler B. Mechanical properties of abdominal aortic aneurysm wall. J Med Eng Technol. 2001;25(4):133-142. doi:10.1080/03091900110057806
Raghavan ML, Hanaoka MM, Kratzberg JA, MDL H, da Silva ES. Biomechanical failure properties and microstructural content of ruptured and unruptured abdominal aortic aneurysms. J Biomech. 2011;44(13):2501-2507. doi:10.1016/j.jbiomech.2011.06.004
Di Martino ES, Bohra A, Vande Geest JP, Gupta N, Makaroun MS, Vorp DA. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J Vasc Surg. 2006;43(3):570-576. doi:10.1016/j.jvs.2005.10.072
Tavares Monteiro JA, Da Silva ES, Raghavan ML, Puech-Leão P, De Lourdes HM, Otoch JP. Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms. J Vasc Surg. 2014;59(5):1393-1401. doi:10.1016/j.jvs.2013.04.064
Vallabhaneni SR, Gilling-Smith GL, How TV, Carter SD, Brennan JA, Harris PL. Heterogeneity of tensile strength and matrix metalloproteinase activity in the wall of abdominal aortic aneurysms. J Endovasc Ther. 2004;11(4):494-502. doi:10.1583/04-1239.1
Forsell C, Swedenborg J, Roy J, Gasser TC. The quasi-static failure properties of the abdominal aortic aneurysm wall estimated by a mixed experimental-numerical approach. Ann Biomed Eng. 2013;41(7):1554-1566. doi:10.1007/s10439-012-0711-4
O'Leary SA, Mulvihill JJ, Barrett HE, et al. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue. J Mech Behav Biomed Mater. 2015;42:154-167. doi:10.1016/j.jmbbm.2014.11.005
Xiong J, Wang SM, Zhou W, Wu JG. Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and nonaneurysmal abdominal aorta. J Vasc Surg. 2008;48(1):189-195. doi:10.1016/j.jvs.2007.12.053
Polzer S, Man V, Vlachovský R, et al. Failure properties of abdominal aortic aneurysm tissue are orientation dependent. J Mech Behav Biomed Mater. 2020;114:104181. doi:10.1016/j.jmbbm.2020.104181
Raghavan ML, Webster MW, Vorp DA. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann Biomed Eng. 1996;24(5):573-582. doi:10.1007/BF02684226
Sassani SG, Kakisis J, Tsangaris S, et al. Layer-Dependent Wall Properties Of Abdominal Aortic Aneurysms: Experimental Study And Material Characterization. Laboratory of Biomechanics, Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Ac: 2015:1-14.
McGloughlin TM, Doyle BJ. New approaches to abdominal aortic aneurysm rupture risk assessment: engineering insights with clinical gain. Arterioscler Thromb Vasc Biol. 2010;30(9):1687-1694. doi:10.1161/ATVBAHA.110.204529
Bruder L, Pelisek J, Eckstein HH, Gee MW. Biomechanical rupture risk assessment of abdominal aortic aneurysms using clinical data: a patient-specific, probabilistic framework and comparative case-control study. PLoS ONE. 2020;15(11 November):e0242097. doi:10.1371/journal.pone.0242097
Tong J, Schriefl AJ, Cohnert T, Holzapfel GA. Gender differences in biomechanical properties, thrombus age, mass fraction and clinical factors of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2013;45(4):364-372. doi:10.1016/j.ejvs.2013.01.003
Polzer S, Gasser TC, Bursa J, et al. Importance of material model in wall stress prediction in abdominal aortic aneurysms. Med Eng Phys. 2013;35(9):1282-1289. doi:10.1016/j.medengphy.2013.01.008
Vitasek R, Gossiho D, Polzer S. Sources of inconsistency in mean mechanical response of abdominal aortic aneurysm tissue. J Mech Behav Biomed Mater. 2020;115:104274. doi:10.1016/j.jmbbm.2020.104274
Duprey A, Trabelsi O, Vola M, Favre JP, Avril S. Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater. 2016;42:273-285. doi:10.1016/j.actbio.2016.06.028
C4Bio | Home. https://c4bio.eu/. Accessed August 23, 2021. ISBN 978-3-030-70965-5, 2021.
Gasser TC. Vascular biomechanics: concepts, models, and applications. Springer; 2021.
Yeoh OH. Some forms of the strain energy function for rubber. Rubber Chem Technol. 1993;66(5):754-771. doi:10.5254/1.3538343
Raghavan ML, Vorp DA, Federle MP, Makaroun MS, Webster MW. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg. 2000;31(4):760-769. doi:10.1067/mva.2000.103971
Polzer S, Gasser TC. Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index. J R Soc Interface. 2015;12(113):20150852. doi:10.1098/rsif.2015.0852
Choi HS, Vito RP. Two-dimensional stress-strain relationship for canine pericardium. J Biomech Eng. 1990;112(2):153-159. doi:10.1115/1.2891166
Federico S, Grillo A, Giaquinta G, Herzog W. Convex Fung-type potentials for biological tissues. Meccanica. 2008;43(3):279-288. doi:10.1007/s11012-007-9090-6
Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech. 1983;16(1):1-12. doi:10.1016/0021-9290(83)90041-6
Armentano RL, Levenson J, Barra JG, et al. Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. Am J Physiol. 1991;260(6):29-26. doi:10.1152/ajpheart.1991.260.6.H1870
Greenwald SE, Moore JE, Rachev A, Kane TPC, Meister JJ. Experimental investigation of the distribution of residual strains in the artery wall. J Biomech Eng. 1997;119(4):438-444. doi:10.1115/1.2798291
Gasser TC. The biomechanical rupture risk assessment of abdominal aortic aneurysms-method and clinical relevance. Lect Notes Appl Comput Mech. 2018;84:233-253. doi:10.1007/978-3-319-59548-1_13
Martufi G, Auer M, Roy J, et al. Multidimensional growth measurements of abdominal aortic aneurysms. J Vasc Surg. 2013;58(3):748-755. doi:10.1016/J.JVS.2012.11.070
Humphrey JD, Rajagopal KR. A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci. 2011;12(3):407-430. doi:10.1142/S0218202502001714
Cyron CJ, Aydin RC, Humphrey JD. A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue. Biomech Model Mechanobiol. 2016;15(6):1389-1403. doi:10.1007/S10237-016-0770-9
Latorre M, Humphrey JD. Fast, rate-independent, finite element implementation of a 3D constrained mixture model of soft tissue growth and remodeling. Comput Methods Appl Mech Eng. 2020;368:113156. doi:10.1016/J.CMA.2020.113156
Volokh KY, Vorp DA. A model of growth and rupture of abdominal aortic aneurysm. J Biomech. 2008;41(5):1015-1021. doi:10.1016/j.jbiomech.2007.12.014
Watton PN, Hill NA. Evolving mechanical properties of a model of abdominal aortic aneurysm. Biomech Model Mechanobiol. 2009;8(1):25-42. doi:10.1007/s10237-007-0115-9
Zeinali-Davarani S, Baek S. Medical image-based simulation of abdominal aortic aneurysm growth. Mech Res Commun. 2012;42:107-117. doi:10.1016/j.mechrescom.2012.01.008
Wilson JS, Baek S, Humphrey JD. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J R Soc Interface. 2012;9(74):2047-2058. doi:10.1098/RSIF.2012.0097
Ghavamian A, Mousavi SJ, Avril S. Computational study of growth and remodeling in ascending thoracic aortic aneurysms considering variations of smooth muscle cell basal tone. Front Bioeng Biotechnol. 2020;8:587376. doi:10.3389/FBIOE.2020.587376
Gasser TC. An irreversible constitutive model for fibrous soft biological tissue: a 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms. Acta Biomater. 2011;7(6):2457-2466. doi:10.1016/j.actbio.2011.02.015
Hamedzadeh A, Gasser TC, Federico S. On the constitutive modelling of recruitment and damage of collagen fibres in soft biological tissues. Eur J Mech - A/Solids. 2018;72:483-496. doi:10.1016/J.EUROMECHSOL.2018.04.007
Miller C, Gasser TC. A microstructurally motivated constitutive description of collagenous soft biological tissue towards the description of their non-linear and time-dependent properties. J Mech Phys Solids. 2021;154:104500. doi:10.1016/J.JMPS.2021.104500
Li ZY, U-King-Im J, Tang TY, Soh E, See TC, Gillard JH. Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J Vasc Surg. 2008;47(5):928-935. doi:10.1016/j.jvs.2008.01.006
Riveros F, Martufi G, Gasser TC, Rodriguez-Matas JF. On the impact of intraluminal thrombus mechanical behavior in AAA passive mechanics. Ann Biomed Eng. 2015;43(9):2253-2264. doi:10.1007/s10439-015-1267-x
Wang DHJ, Makaroun M, Webster MW, Vorp DA. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J Biomech Eng. 2001;123(6):536-539. doi:10.1115/1.1411971
Lu J, Zhou X, Raghavan ML. Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J Biomech. 2007;40(3):693-696. doi:10.1016/j.jbiomech.2006.01.015
Joldes GR, Miller K, Wittek A, Doyle B. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. J Mech Behav Biomed Mater. 2016;58:139-148. doi:10.1016/j.jmbbm.2015.07.029
Man V, Polzer S, Gasser TCC, Novotny T, Bursa J. Impact of isotropic constitutive descriptions on the predicted peak wall stress in abdominal aortic aneurysms. Med Eng Phys. 2018;53:49-57. doi:10.1016/j.medengphy.2018.01.002
Schurink GWH, Van Baalen JM, Visser MJT, Van Bockel JH. Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall. J Vasc Surg. 2000;31(3):501-506. doi:10.1067/mva.2000.103693
Polzer S, Gasser TC, Markert B, Bursa J, Skacel P. Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. Biomed Eng Online. 2012;62:11. doi:10.1186/1475-925X-11-62
Ayyalasomayajula A, Geest JPV, Simon BR. Porohyperelastic finite element modeling of abdominal aortic aneurysms. J Biomech Eng. 2010;132(10):1-8. doi:10.1115/1.4002370
Gokani VJ, Sidloff D, Bath MF, Bown MJ, Sayers RD, Choke E. A retrospective study: factors associated with the risk of abdominal aortic aneurysm rupture. Vascul Pharmacol. 2015;65:13-16. doi:10.1016/j.vph.2014.11.006
Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg. 2002;36(3):589-597. doi:10.1067/mva.2002.125478
Fillinger MF, Marra SP, Raghavan ML, Kennedy FE. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg. 2003;37(4):724-732. doi:10.1067/mva.2003.213
Venkatasubramaniam AK, Fagan MJ, Mehta T, et al. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2004;28(2):168-176. doi:10.1016/j.ejvs.2004.03.029
Vande Geest JP, Di Martino ES, Bohra A, Makaroun MS, Vorp DA. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann N Y Acad Sci. 2006;1085:11-21. doi:10.1196/annals.1383.046
Truijers M, Pol JA, SchultzeKool LJ, van Sterkenburg SM, Fillinger MF, Blankensteijn JD. Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2007;33(4):401-407. doi:10.1016/j.ejvs.2006.10.009
Vande Geest JP, Schmidt DE, Sacks MS, Vorp DA. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann Biomed Eng. 2008;36(6):921-932. doi:10.1007/s10439-008-9490-3
Heng MS, Fagan MJ, Collier JW, Desai G, McCollum PT, Chetter IC. Peak wall stress measurement in elective and acute abdominal aortic aneurysms. J Vasc Surg. 2008;47(1):17-22. doi:10.1016/j.jvs.2007.09.002
Maier A, Gee MW, Reeps C, Pongratz J, Eckstein HH, Wall WA. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann Biomed Eng. 2010;38(10):3124-3134. doi:10.1007/s10439-010-0067-6
Gasser TC, Nchimi A, Swedenborg J, et al. A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation. Eur J Vasc Endovasc Surg. 2014;47(3):288-295. doi:10.1016/j.ejvs.2013.12.018
Erhart P, Hyhlik-Dürr A, Geisbüsch P, et al. Finite element analysis in asymptomatic, symptomatic, and ruptured abdominal aortic aneurysms: in search of new rupture risk predictors. Eur J Vasc Endovasc Surg. 2015;49(3):239-245. doi:10.1016/j.ejvs.2014.11.010
Erhart P, Roy J, De Vries JPPM, et al. Prediction of rupture sites in abdominal aortic aneurysms after finite element analysis. J Endovasc Ther. 2016;23(1):115-120. doi:10.1177/1526602815612196
Chung TK, da Silva ES, Raghavan SML. Does elevated wall tension cause aortic aneurysm rupture? Investigation using a subject-specific heterogeneous model. J Biomech. 2017;64:164-171. doi:10.1016/j.jbiomech.2017.09.041
Leemans EL, Willems TP, Slump CH, van der Laan MJ, Zeebregts CJ. Additional value of biomechanical indices based on CTa for rupture risk assessment of abdominal aortic aneurysms. PLOS ONE. 2018;13(8):e0202672. doi:10.1371/journal.pone.0202672
Miller K, Mufty H, Catlin A, et al. Is there a relationship between stress in walls of abdominal aortic aneurysm and symptoms? J Surg Res. 2020;252:37-46. doi:10.1016/j.jss.2020.01.025
Doyle BJ, Bappoo N, Syed MBJ, et al. Biomechanical assessment predicts aneurysm related events in patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2020;60(3):P365-373. doi:10.1016/j.ejvs.2020.02.023
Polzer S, Gasser TC, Vlachovský R, et al. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms. J Vasc Surg. 2020;71(2):617-626. doi:10.1016/j.jvs.2019.03.051
Singh TP, Moxon JV, Iyer V, Gasser TC, Jenkins J, Golledge J. Comparison of peak wall stress and peak wall rupture index in ruptured and asymptomatic intact abdominal aortic aneurysms. Br J Surg. 2020;108(6):652-658. doi:10.1002/bjs.11995
Polzer S, Kracík J, Novotný T, Kubíček L, Staffa R, Raghavan ML. Methodology for estimation OF annual risk of rupture for abdominal aortic aneurysm. Comput Methods Programs Biomed. 2020;200:105916. doi:10.1016/j.cmpb.2020.105916
Moireau P, Xiao N, Astorino M, et al. External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol. 2011;11(1):1-18. doi:10.1007/S10237-011-0289-Z
de Putter S, Wolters BJBM, Rutten MCM, Breeuwer M, Gerritsen FA, van de Vosse FN. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J Biomech. 2007;40(5):1081-1090. doi:10.1016/j.jbiomech.2006.04.019
Riveros F, Chandra S, Finol EA, Gasser TC, Rodriguez JF. A pull-back algorithm to determine the unloaded vascular geometry in anisotropic hyperelastic AAA passive mechanics. Ann Biomed Eng. 2013;41(4):694-708. doi:10.1007/s10439-012-0712-3
Gee MW, Reeps C, Eckstein HH, Wall WA. Prestressing in finite deformation abdominal aortic aneurysm simulation. J Biomech. 2009;42(11):1732-1739. doi:10.1016/j.jbiomech.2009.04.016
Govindjee S, Mihalic PA. Computational methods for inverse finite elastostatics. Comput Methods Appl Mech Eng. 1996;136(1-2):47-57. doi:10.1016/0045-7825(96)01045-6
Rachev A, Greenwald S, Shazly T. Are geometrical and structural variations along the length of the aorta governed by a principle of “optimal mechanical operation”? J Biomech Eng. 2013;135(8):81006. doi:10.1115/1.4024664
Fung YC. What are the residual stresses doing in our blood vessels? Ann Biomed Eng. 1991;19(3):237-249. doi:10.1007/BF02584301
Rachev A, Greenwald SE. Residual strains in conduit arteries. J Biomech. 2003;36(5):661-670. doi:10.1016/S0021-9290(02)00444-X
Holzapfel GA, Sommer G, Auer M, Regitnig P, Ogden RW. Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann Biomed Eng. 2007;35(4):530-545. doi:10.1007/s10439-006-9252-z
Rodriguez EK, Hoger A, McCulloch AD. Stress-dependent finite growth in soft elastic tissues. J Biomech. 1994;27(4):455-467. doi:10.1016/0021-9290(94)90021-3
Skalak R, Zargaryan S, Jain RK, Netti PA, Hoger A. Compatibility and the genesis of residual stress by volumetric growth. J Math Biol. 1996;34(8):889-914. doi:10.1007/BF01834825
Polzer S, Bursa J, Gasser TCC, Staffa R, Vlachovsky R. A numerical implementation to predict residual strains from the homogeneous stress hypothesis with application to abdominal aortic aneurysms. Ann Biomed Eng. 2013;41(7):1516-1527. doi:10.1007/s10439-013-0749-y
Carew TE, Vaishnav RN, Patel DJ. Compressibility of the arterial wall. Circ Res. 1968;23(1):61-68. doi:10.1161/01.RES.23.1.61
Joldes GR, Miller K, Wittek A, Forsythe RO, Newby DE, Doyle BJ. BioPARR: a software system for estimating the rupture potential index for abdominal aortic aneurysms. Sci Rep. 2017;7(1):1-15. doi:10.1038/s41598-017-04699-1
Gasser TC. Biomechanical rupture risk assessment - a consistent and objective decision-making tool for abdominal aortic aneurysm patients. Aorta. 2016;4(2):1-25. doi:10.12945/j.aorta.2016.15.030
Tarjuelo-Gutierrez J, Rodriguez-Vila B, Pierce DM, et al. High-quality conforming hexahedral meshes of patient-specific abdominal aortic aneurysms including their intraluminal thrombi. Med Biol Eng Comput. 2014;52(2):159-168. doi:10.1007/s11517-013-1127-5
Reeps C, Gee M, Maier A, Gurdan M, Eckstein HH, Wall WA. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. J Vasc Surg. 2010;51(3):679-688. doi:10.1016/j.jvs.2009.10.048
Simo JC, Taylor RL. Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput Methods Appl Mech Eng. 1991;85(3):273-310. doi:10.1016/0045-7825(91)90100-K
Man V, Polzer S, Burša J, Burs J. Influence of mesh density on calculated extreme stresses in aortic aneurysms. Appl Comput Mech. 2016;10(2):97-110.
Slazansky M, Polzer S, Man V, Bursa J. Analysis of accuracy of biaxial tests based on their computational simulations. Strain. 2016;52(5):424-435. doi:10.1111/str.12205
Rodríguez JF, Martufi G, Doblaré M, Finol EA. The effect of material model formulation in the stress analysis of abdominal aortic aneurysms. Ann Biomed Eng. 2009;37(11):2218-2221. doi:10.1007/s10439-009-9767-1
Di Martino ES, Vorp DA. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann Biomed Eng. 2003;31(7):804-809. doi:10.1114/1.1581880
Polzer S, Gasser TC, Swedenborg J, Bursa J. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2011;41(4):467-473. doi:10.1016/j.ejvs.2010.12.010
Wang DHJ, Makaroun MS, Webster MW, Vorp DA. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg. 2002;36(3):598-604. doi:10.1067/mva.2002.126087
Mower WR, Quinones WJ, Gambhir SS. Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J Vasc Surg. 1997;26(4):602-608. doi:10.1016/S0741-5214(97)70058-2
Wang DHJ, Schiro BJ, Makaroun MS, Webster MW, Vorp DA. Effect of intraluminal thrombus on local abdominal aortic aneurysm wall strength. Annu Int Conf IEEE Eng Med Biol - Proc. 1999;1:244. doi:10.1109/iembs.1999.802299
Di Martino E, Mantero S, Inzoli F, et al. Biomechanics of abdominal aortic aneurysm in the! Presence of endoluminal thrombus: experimental characterisation and structural static computational analysis. Eur J Vasc Endovasc Surg. 1998;15(4):290-299. doi:10.1016/S1078-5884(98)80031-2
Thubrikar MJ, Robicsek F, Labrosse M, Chervenkoff V, Fowler BL. Effect of thrombus on abdominal aortic aneurysm wall dilation and stress. J Card Surg. 2003;44(1):67-77.
Polzer S, Bursa J. Poroelastic model of intraluminal thrombus in FEA of aortic aneurysm. In: IFMBE Proceedings. Vol 31. IFMBE; 2010.
Speelman L, Bosboom EMH, Schurink GWH, et al. Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis. J Biomech. 2009;42(11):1713-1719. doi:10.1016/j.jbiomech.2009.04.020
Zelaya JE, Goenezen S, Dargon PT, Azarbal AF, Rugonyi S. Improving the efficiency of abdominal aortic aneurysm wall stress computations. PLoS ONE. 2014;9(7):e101353. doi:10.1371/journal.pone.0101353
Speelman L, Bohra A, Bosboom EMH, et al. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J Biomech Eng. 2007;129(1):105-109. doi:10.1115/1.2401189
Maier A, Gee MW, Reeps C, Eckstein HH, Wall WA. Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech Model Mechanobiol. 2010;9(5):511-521. doi:10.1007/s10237-010-0191-0
Safar ME, Girerd X, Laurent S. Structural changes of large conduit arteries in hypertension. J Hypertens. 1996;14(5):545-555. doi:10.1097/00004872-199605000-00002
Matsumoto T, Hayashi K. Response of arterial wall to hypertension and residual stress. Hayashi K., Kamiya A., Ono K., Biomechanics. Springer; 1996. doi:10.1007/978-4-431-68317-9_5
Forsell C, Björck HM, Eriksson P, Franco-Cereceda A, Gasser TC. Biomechanical properties of the thoracic aneurysmal wall: differences between bicuspid aortic valve and tricuspid aortic valve patients. Ann Thoracic Surg. 2014;98(1):65-71. doi:10.1016/j.athoracsur.2014.04.042
Martufi G, Lindquist Liljeqvist M, Sakalihasan N, et al. Local diameter, wall stress, and thrombus thickness influence the local growth of abdominal aortic aneurysms. J Endovasc Ther. 2016;23(6):957-966. doi:10.1177/1526602816657086
Ambrosi D, Guillou A, Di Martino ES. Stress-modulated remodeling of a non-homogeneous body. Biomech Model Mechanobiol. 2008;7(1):63-76. doi:10.1007/s10237-007-0076-z
Lindquist Liljeqvist M, Hultgren R, Gasser TC, Roy J. Volume growth of abdominal aortic aneurysms correlates with baseline volume and increasing finite element analysis-derived rupture risk. J Vasc Surg. 2016;63(6):1434-1442.e3. doi:10.1016/J.JVS.2015.11.051
Lin WJ, Iafrati MD, Peattie RA, Dorfmann L. Growth and remodeling with application to abdominal aortic aneurysms. J Eng Math. 2018;109(1):113-137. doi:10.1007/s10665-017-9915-9
Speelman L, Hellenthal FA, Pulinx B, et al. The influence of wall stress on AAA growth and biomarkers. Eur J Vasc Endovasc Surg. 2010;39(4):410-416. doi:10.1016/j.ejvs.2009.12.021
Vashishth D, Tanner KE, Bonfield W. Experimental validation of a microcracking-based toughening mechanism for cortical bone. J Biomech. 2003;36(1):121-124. doi:10.1016/S0021-9290(02)00319-6
Yang QD, Cox BN, Nalla RK, Ritchie RO. Re-evaluating the toughness of human cortical bone. Bone. 2006;38(6):878-887. doi:10.1016/J.BONE.2005.10.014
Li S, Abdel-Wahab A, Silberschmidt VV. Analysis of fracture processes in cortical bone tissue. Eng Fract Mech. 2013;110:448-458. doi:10.1016/J.ENGFRACMECH.2012.11.020
Kataruka A, Mendu K, Okeoghene O, Puthuvelil J, Akono AT. Microscopic assessment of bone toughness using scratch tests. Bone Rep. 2017;6:17-25. doi:10.1016/J.BONR.2016.12.001
Yang W, Sherman VR, Gludovatz B, et al. On the tear resistance of skin. Nat Commun. 2015;6(1):1-10. doi:10.1038/ncomms7649
Pissarenko A, Yang W, Quan H, et al. The toughness of porcine skin: quantitative measurements and microstructural characterization. J Mech Behav Biomed Mater. 2020;109:103848. doi:10.1016/J.JMBBM.2020.103848
Doyle BJ, Callanan A, Walsh MT, Grace PA, Mcgloughlin TM. A Finite Element Analysis Rupture Index (FEARI) as an Additional Tool for Abdominal Aortic Aneurysm Rupture Prediction. Bentham Science Publishers; 2009.
Polzer S, Kracík J, Novotný T, Kubíček L, Staffa R, Raghavan ML. Methodology for estimation of annual risk of rupture for abdominal aortic aneurysm. Comput Methods Programs Biomed. 2021;200:105916. doi:10.1016/j.cmpb.2020.105916
Teutelink A, Cancrinus E, Van De Heuvel D, Moll F, De Vries JP. Preliminary intraobserver and interobserver variability in wall stress and rupture risk assessment of abdominal aortic aneurysms using a semiautomatic finite element model. J Vasc Surg. 2012;55(2):326-330. doi:10.1016/j.jvs.2011.08.012
Hyhlik-Dürr A, Krieger T, Geisbüsch P, Kotelis D, Able T, Böckler D. Reproducibility of deriving parameters of AAA rupture risk from patient-specific 3D finite element models. J Endovasc Ther. 2011;18(3):289-298. doi:10.1583/10-3384MR.1
Trachet B, Aslanidou L, Piersigilli A, et al. Angiotensin II infusion into ApoE−/− mice: a model for aortic dissection rather than abdominal aortic aneurysm? Cardiovasc Res. 2017;113(10):1230-1242. doi:10.1093/cvr/cvx128
Aslanidou L, Ferraro M, Lovric G, et al. Co-localization of microstructural damage and excessive mechanical strain at aortic branches in angiotensin-II-infused mice. Biomech Model Mechanobiol. 2019;19(1):81-97. doi:10.1007/S10237-019-01197-3
Biasetti J, Hussain F, Gasser TC. Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intraluminal thrombus formation. J R Soc Interface. 2011;8(63):1449-1461. doi:10.1098/rsif.2011.0041
Jiang Z, Do HN, Choi J, Lee W, Baek S. A deep learning approach to predict abdominal aortic aneurysm expansion using longitudinal data. Front Phys. 2020;7:235. doi:10.3389/FPHY.2019.00235
Liljeqvist ML, Bogdanovic M, Siika A, Gasser TC, Hultgren R, Roy J. Geometric and biomechanical prediction modeling of growth and outcome of small abdominal aortic aneurysms using machine learning. Sci Rep. 2021;11:18040.
Alloisio M, Roy J, Siika A, Liljeqvist ML & Gasser TC Abdominal aortic aneurysm rupture risk assessment using machine learning to integrate biomechanical, geometrical, and patient characteristics. In: ESVS 35th Annual Meeting, Rottherdam; 2021.