Sorption and Mobility of Charged Organic Compounds: How to Confront and Overcome Limitations in Their Assessment

. 2022 Apr 19 ; 56 (8) : 4702-4710. [epub] 20220330

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35353522

Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.

College of Environmental Science and Engineering Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control Nankai University Tianjin 300350 P R China

Department of Analytical Chemistry Helmholtz Centre for Environmental Research UFZ Permoserstrasse 15 04318 Leipzig Germany

Department of Cell Toxicology Helmholtz Centre for Environmental Research UFZ Permoser Strasse 15 DE 04318 Leipzig Germany

Department of Environmental Geosciences Centre for Microbiology and Environmental Systems Science University of Vienna 1090 Wien Austria

Department of Environmental Sciences The Connecticut Agricultural Experiment Station New Haven; 123 Huntington St New Haven Connecticut 06504 1106 United States

Department of Soil and Water Sciences Institute of Environmental Sciences; Faculty of Agriculture Food and Environment The Hebrew University of Jerusalem P O Box 12 Rehovot 7610001 Israel

Environmental Analytics Agroscope 8046 Zürich Switzerland

Environmental Toxicology Center for Applied Geoscience Eberhard Karls University Tübingen Schnarrenbergstr 94 96 DE 72076 Tübingen Germany

Health and Environmental Risk Division National Institute for Environmental Studies Onogawa 16 2 305 8506 Tsukuba Ibaraki Japan

Institute for Analytical Chemistry University of Leipzig Linnéstrasse 3 04103 Leipzig Germany

Institute of Biogeochemistry and Pollutant Dynamics ETH Zürich 8092 Zürich Switzerland

Instrumental Analytical Chemistry and Centre for Water and Environmental Research University of Duisburg Essen Universitätsstrasse 5 45141 Essen Germany

Norwegian Geotechnical Institute P O Box 3930 Ullevaal Stadion N 0806 Oslo Norway

Norwegian University of Science and Technology NO 7491 Trondheim Norway

RECETOX Masaryk University 625 00 Brno Czech Republic

RWTH Aachen University Institute of Environmental Engineering Mies van der Rohe Straße 1 52074 Aachen Germany

Wageningen Environmental Research Wageningen University and Research P O Box 47 6700AA Wageningen Netherlands

Erratum v

PubMed

Zobrazit více v PubMed

Jin B.; Huang C.; Yu Y.; Zhang G.; Arp H. P. H. The Need to Adopt an International PMT Strategy to Protect Drinking Water Resources. Environ. Sci. Technol. 2020, 54 (19), 11651–11653. 10.1021/acs.est.0c04281. PubMed DOI

Hale S. E.; Arp H. P. H.; Schliebner I.; Neumann M. What’s in a Name: Persistent, Mobile, and Toxic (PMT) and Very Persistent and Very Mobile (VPvM) Substances. Environ. Sci. Technol. 2020, 54 (23), 14790–14792. 10.1021/acs.est.0c05257. PubMed DOI

Reemtsma T.; Berger U.; Arp H. P. H.; Gallard H.; Knepper T. P.; Neumann M.; Quintana J. B.; Voogt P. de. Mind the Gap: Persistent and Mobile Organic Compounds—Water Contaminants That Slip Through. Environ. Sci. Technol. 2016, 50 (19), 10308–10315. 10.1021/acs.est.6b03338. PubMed DOI

Arp H. P. H.; Hale S. E.. REACH: Improvement of Guidance and Methods for the Identification and Assessment of PMT/VPvM Substances, 2019.

Neuwald I.; Muschket M.; Zahn D.; Berger U.; Seiwert B.; Meier T.; Kuckelkorn J.; Strobel C.; Knepper T. P.; Reemtsma T. Filling the Knowledge Gap: A Suspect Screening Study for 1310 Potentially Persistent and Mobile Chemicals with SFC- and HILIC-HRMS in Two German River Systems. Water Res. 2021, 204, 117645.10.1016/j.watres.2021.117645. PubMed DOI

Armitage J. M.; Erickson R. J.; Luckenbach T.; Ng C. A.; Prosser R. S.; Arnot J. A.; Schirmer K.; Nichols J. W. Assessing the Bioaccumulation Potential of Ionizable Organic Compounds: Current Knowledge and Research Priorities. Environ. Toxicol. Chem. 2017, 36 (4), 882–897. 10.1002/etc.3680. PubMed DOI PMC

Escher B. I.; Abagyan R.; Embry M.; Klüver N.; Redman A. D.; Zarfl C.; Parkerton T. F. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals. Environ. Toxicol. Chem. 2020, 39 (2), 269–286. 10.1002/etc.4602. PubMed DOI

Chiou C. T.; Peters L. J.; Freed V. H. A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds. Science 1979, 206 (4420), 831–832. 10.1126/science.206.4420.831. PubMed DOI

Karickhoff S. W.; Brown D. S.; Scott T. A. Sorption of Hydrophobic Pollutants on Natural Sediments. Water Res. 1979, 13 (3), 241–248. 10.1016/0043-1354(79)90201-X. DOI

Hamaker J.; Thompson J.. Adsorption. In Goring GAI, Hamaker JW (eds) Organic Chemicals in the Soil Environment, Vol 1. Dekker; New York, 1972; pp 49–143.

Kile D. E.; Chiou C. T.; Zhou H..; Li H..; Xu O.. Partition of Nonpolar Organic Pollutants from Water to Soil and Sediment Organic Matters. Environ. Sci. Technol. 1995, 29 (5), 1401–1406. 10.1021/es00005a037. PubMed DOI

Niederer C.; Schwarzenbach R. P.; Goss K. U. Elucidating Differences in the Sorption Properties of 10 Humic and Fulvic Acids for Polar and Nonpolar Organic Chemicals. Environ. Sci. Technol. 2007, 41 (19), 6711–6717. 10.1021/es0709932. PubMed DOI

Cornelissen G.; Gustafsson O.; Bucheli T.; Jonker M.; Koelmans A.; van Noort P. Extensive Sorption of Organic Compounds to Black Carbon, Coal, and Kergen in Sediments and Soils: Mechanisms and Consequences for Distribution, Bioaccumulation, and Biodegradation. Environ. Sci. Technol. 2005, 39 (18), 6881–6895. 10.1021/es050191b. PubMed DOI

ECHA, E. C. A . Guidance on Biocides Legislation: Vol. IV Environment, Assessment & Evaluation (Parts B+C), 2017.

FAO . Assessing Soil Contamination A Reference Manual; Food and Agriculture Organization - Information Division, 2000.

Doucette W. J. Quantitative Structure-Activity Relationships for Predicting Soil-Sediment Sorption Coefficients for Organic Chemicals. Environ. Toxicol. Chem. 2003, 22 (8), 1771–1788. 10.1897/01-362. PubMed DOI

Jafvert C. T.; Westall J. C.; Grieder E.; Schwarzenbach R. P. Distribution of Hydrophobic Ionogenic Organic Compounds between Octanol and Water: Organic Acids. Environ. Sci. Technol. 1990, 24 (12), 1795–1803. 10.1021/es00082a002. DOI

Westall J. C.; Leuenberger C.; Schwarzenbach R. P. Influence of PH and Ionic Strength on the Aqueous-Nonaqueous Distribution of Chlorinated Phenols. Environ. Sci. Technol. 1985, 19 (2), 193–198. 10.1021/es00132a014. DOI

Neumann M.; Schliebner I.. Protecting the Sources of Our Drinking Water: The Criteria for Identifying Persistent, Mobile and Toxic (PMT) Substances and Very Persistent and Very Mobile (VPvM) Substances under EU Regulation REACH (EC) No 1907/2006; Umweltbundesamt, 2019.

USEPA . Estimation Programs Interface SuiteTM for Microsoft® Windows, v 4.11; United States Environmental Protection Agency: Washington, DC, 2012.

Mannhold R.; Poda G. I.; Ostermann C.; Tetko I. V. Calculation of Molecular Lipophilicity: State-of-the-Art and Comparison of LogP Methods on More than 96,000 Compounds. J. Pharm. Sci. 2009, 98 (3), 861–893. 10.1002/jps.21494. PubMed DOI

Kleber M.; Bourg I. C.; Coward E. K.; Hansel C. M.; Myneni S. C. B.; Nunan N. Dynamic Interactions at the Mineral–Organic Matter Interface. Nature Reviews Earth & Environment 2021, 2, 1–20. 10.1038/s43017-021-00162-y. DOI

Sibley S. D.; Pedersen J. A. Interaction of the Macrolide Antimicrobial Clarithromycin with Dissolved Humic Acid. Environ. Sci. Technol. 2008, 42 (2), 422–428. 10.1021/es071467d. PubMed DOI

Droge S.; Goss K.-U. Effect of Sodium and Calcium Cations on the Ion-Exchange Affinity of Organic Cations for Soil Organic Matter. Environ. Sci. Technol. 2012, 46 (11), 5894–5901. 10.1021/es204449r. PubMed DOI

Droge S. T. J.; Goss K.-U. Sorption of Organic Cations to Phyllosilicate Clay Minerals: CEC-Normalization, Salt Dependency, and the Role of Electrostatic and Hydrophobic Effects. Environ. Sci. Technol. 2013, 47 (24), 14224–14232. 10.1021/es403187w. PubMed DOI

Chandler D. Interfaces and the Driving Force of Hydrophobic Assembly. Nature 2005, 437 (7059), 640–647. 10.1038/nature04162. PubMed DOI

Lazaridis T. Solvent Size vs Cohesive Energy as the Origin of Hydrophobicity. Acc. Chem. Res. 2001, 34 (12), 931–937. 10.1021/ar010058y. PubMed DOI

Southall N. T.; Dill K. A.; Haymet A. D. J. A View of the Hydrophobic Effect. J. Phys. Chem. B 2002, 106 (3), 521–533. 10.1021/jp015514e. DOI

Bronner G.; Goss K. U. Predicting Sorption of Pesticides and Other Multifunctional Organic Chemicals to Soil Organic Carbon. Environ. Sci. Technol. 2011, 45 (4), 1313–1319. 10.1021/es102553y. PubMed DOI

Arp H. P. H.; Hale S. E.. On the Persistence and Mobility of Organic Contaminants Detected in Freshwater Resources. in prep. PubMed PMC

OECD . eChemPortal : The Global Portal to Information on Chemical Substances https://www.echemportal.org/echemportal/ (accessed 2022/01/05).

Arp H. P. H.; Brown T. N.; Berger U.; Hale S. E. Ranking REACH Registered Neutral, Ionizable and Ionic Organic Chemicals Based on Their Aquatic Persistency and Mobility. Environmental Science: Processes and Impacts 2017, 19 (7), 939–955. 10.1039/C7EM00158D. PubMed DOI

McBride M. B.Environmental Chemistry of Soils; Oxford University Press, 1994.

Xiao F.; Pignatello J. J. Effect of Adsorption Nonlinearity on the Ph-Adsorption Profile of Ionizable Organic Compounds. Langmuir 2014, 30 (8), 1994–2001. 10.1021/la403859u. PubMed DOI

Donnan F. G. Theory of Membrane Equilibria and Membrane Potentials in the Presence of Non-Dialysing Electrolytes. A Contribution to Physical-Chemical Physiology. J. Membr. Sci. 1995, 100 (1), 45–55. 10.1016/0376-7388(94)00297-C. DOI

Schönsee C. D.; Wettstein F. E.; Bucheli T. D. Phytotoxin Sorption to Clay Minerals. Environmental Sciences Europe 2021, 33 (1), 36.10.1186/s12302-021-00469-z. DOI

MacKay A. A.; Vasudevan D. Polyfunctional Ionogenic Compound Sorption: Challenges and New Approaches To Advance Predictive Models. Environ. Sci. Technol. 2012, 46 (17), 9209–9223. 10.1021/es301036t. PubMed DOI

Kah M.; Sigmund G.; Xiao F.; Hofmann T. Sorption of Ionizable and Ionic Organic Compounds to Biochar, Activated Carbon and Other Carbonaceous Materials. Water Res. 2017, 124, 673–692. 10.1016/j.watres.2017.07.070. PubMed DOI

Zhu D.; Hyun S.; Pignatello J. J.; Lee L. S. Evidence for Pi-Pi Electron Donor-Acceptor Interactions between Pi-Donor Aromatic Compounds and Pi-Acceptor Sites in Soil Organic Matter through PH Effects on Sorption. Environ. Sci. Technol. 2004, 38, 4361–4368. 10.1021/es035379e. PubMed DOI

Xiao F.; Pignatello J. J. Π+-π Interactions between (Hetero)Aromatic Amine Cations and the Graphitic Surfaces of Pyrogenic Carbonaceous Materials. Environ. Sci. Technol. 2015, 49 (2), 906–914. 10.1021/es5043029. PubMed DOI

Xiao F.; Pignatello J. J. Interactions of Triazine Herbicides with Biochar: Steric and Electronic Effects. Water Res. 2015, 80, 179–188. 10.1016/j.watres.2015.04.040. PubMed DOI

Li X.; Pignatello J. J.; Wang Y.; Xing B. New Insight into Adsorption Mechanism of Ionizable Compounds on Carbon Nanotubes. Environ. Sci. Technol. 2013, 47 (15), 8334–8341. 10.1021/es4011042. PubMed DOI

Yang Y.; Duan P.; Schmidt-Rohr K.; Pignatello J. J. Physicochemical Changes in Biomass Chars by Thermal Oxidation or Ambient Weathering and Their Impacts on Sorption of a Hydrophobic and a Cationic Compound. Environ. Sci. Technol. 2021, 55 (19), 13072–13081. 10.1021/acs.est.1c04748. PubMed DOI

Graber E. R.; Borisover M. D. Hydration-Facilitated Sorption of Specifically Interacting Organic Compounds by Model Soil Organic Matter. Environ. Sci. Technol. 1998, 32 (2), 258–263. 10.1021/es9705957. DOI

Graber E. R.; Borisover M. Exploring Organic Compound Interactions with Organic Matter: The Thermodynamic Cycle Approach. Colloids Surf., A 2005, 265 (1), 11–22. 10.1016/j.colsurfa.2005.02.039. DOI

Droge S. T. J.; Goss K.-U. Development and Evaluation of a New Sorption Model for Organic Cations in Soil: Contributions from Organic Matter and Clay Minerals. Environ. Sci. Technol. 2013, 47 (24), 14233–14241. 10.1021/es4031886. PubMed DOI

Sigmund G.; Gharasoo M.; Hüffer T.; Hofmann T. Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials. Environ. Sci. Technol. 2020, 54 (7), 4583–4591. 10.1021/acs.est.9b06287. PubMed DOI PMC

Parfitt R. L.; Giltrap D. J.; Whitton J. S. Contribution of Organic Matter and Clay Minerals to the Cation Exchange Capacity of Soils. null 1995, 26 (9–10), 1343–1355. 10.1080/00103629509369376. DOI

Haderlein S. B.; Weissmahr K. W.; Schwarzenbach R. P. Specific Adsorption of Nitroaromatic Explosives and Pesticides to Clay Minerals. Environ. Sci. Technol. 1996, 30 (2), 612–622. 10.1021/es9503701. DOI

European Commission . Setting out the Data Requirements for Plant Protection Products, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, 2013.

European Comission . Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions Chemicals Strategy for Sustainability Towards a Toxic-Free Environment COM/2020/667 Final, 2020.

Gustafson D. I. Groundwater Ubiquity Score: A Simple Method for Assessing Pesticide Leachability. Environ. Toxicol. Chem. 1989, 8 (4), 339–357. 10.1002/etc.5620080411. DOI

Chemicals legislation – revision of REACH Regulation to help achieve a toxic-free environment https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12959-Chemicals-legislation-revision-of-REACH-Regulation-to-help-achieve-a-toxic-free-environment_en (accessed 2021/11/05).

European Commission . European Commission Ad Hoc Meeting of CARACAL PBT/VPvB/PMT/VPvM Criteria 30 September 2021. Topic: Discussion on PMT/VPvM Possible Criteria in CLP. Ad-Hoc CA/03/2021. 9 Pp. Brussels. 2021; European Commission, 2021.

Soil Survey Staff, Natural Conservation Service, United States Department of Agriculture . Web Soil Survey https://websoilsurvey.nrcs.usda.gov/.

Joint Research Centre - European Soil Data Centre (ESDAC) . European Soil Database & Soil Properties https://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-soil-properties.

Endo S.; Goss K. U. Applications of Polyparameter Linear Free Energy Relationships in Environmental Chemistry. Environ. Sci. Technol. 2014, 48 (21), 12477–12491. 10.1021/es503369t. PubMed DOI

Abraham M. H.; William E.; Acree J. The Transfer of Neutral Molecules, Ions and Ionic Species from Water to Wet Octanol. Phys. Chem. Chem. Phys. 2010, 12 (40), 13182–13188. 10.1039/c0cp00695e. PubMed DOI

Abraham M. H.; Acree W. E. Descriptors for Ions and Ion-Pairs for Use in Linear Free Energy Relationships. Journal of Chromatography A 2016, 1430, 2–14. 10.1016/j.chroma.2015.07.023. PubMed DOI

Droge S. T. J.Sorption of Polar and Ionogenic Organic Chemicals. In Bioavailability of Organic Chemicals in Soil and Sediment; Ortega-Calvo J. J.; Parsons J. R., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, 2020; pp 43–80. 10.1007/698_2020_517. DOI

Schönsee C. D.; Wettstein F. E.; Bucheli T. D. Disentangling Mechanisms in Natural Toxin Sorption to Soil Organic Carbon. Environ. Sci. Technol. 2021, 55 (8), 4762–4771. 10.1021/acs.est.0c06634. PubMed DOI

Bi E.; Schmidt T. C.; Haderlein S. B. Practical Issues Relating to Soil Column Chromatography for Sorption Parameter Determination. Chemosphere 2010, 80 (7), 787–793. 10.1016/j.chemosphere.2010.05.006. PubMed DOI

Aumeier B. M.; Augustin A.; Thönes M.; Sablotny J.; Wintgens T.; Wessling M. Linking the Effect of Temperature on Adsorption from Aqueous Solution with Solute Dissociation. Journal of Hazardous Materials 2022, 429, 128291.10.1016/j.jhazmat.2022.128291. PubMed DOI

Schulze S.; Zahn D.; Montes R.; Rodil R.; Quintana J. B.; Knepper T. P.; Reemtsma T.; Berger U. Occurrence of Emerging Persistent and Mobile Organic Contaminants in European Water Samples. Water Res. 2019, 153, 80–90. 10.1016/j.watres.2019.01.008. PubMed DOI

Brusseau M. L.; Guo B. Air-Water Interfacial Areas Relevant for Transport of per and Poly-Fluoroalkyl Substances. Water Res. 2021, 207, 117785.10.1016/j.watres.2021.117785. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...