Sorption and Mobility of Charged Organic Compounds: How to Confront and Overcome Limitations in Their Assessment
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35353522
PubMed Central
PMC9022425
DOI
10.1021/acs.est.2c00570
Knihovny.cz E-zdroje
- Klíčová slova
- anion, cation, contaminant fate, environmental risk assessment, ionizable organic compound, sorption model, zwitterion,
- MeSH
- adsorpce MeSH
- látky znečišťující půdu * analýza MeSH
- organické látky * chemie MeSH
- půda MeSH
- uhlík chemie MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- látky znečišťující půdu * MeSH
- organické látky * MeSH
- půda MeSH
- uhlík MeSH
- voda MeSH
Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.
Environmental Analytics Agroscope 8046 Zürich Switzerland
Institute for Analytical Chemistry University of Leipzig Linnéstrasse 3 04103 Leipzig Germany
Institute of Biogeochemistry and Pollutant Dynamics ETH Zürich 8092 Zürich Switzerland
Norwegian Geotechnical Institute P O Box 3930 Ullevaal Stadion N 0806 Oslo Norway
Norwegian University of Science and Technology NO 7491 Trondheim Norway
Zobrazit více v PubMed
Jin B.; Huang C.; Yu Y.; Zhang G.; Arp H. P. H. The Need to Adopt an International PMT Strategy to Protect Drinking Water Resources. Environ. Sci. Technol. 2020, 54 (19), 11651–11653. 10.1021/acs.est.0c04281. PubMed DOI
Hale S. E.; Arp H. P. H.; Schliebner I.; Neumann M. What’s in a Name: Persistent, Mobile, and Toxic (PMT) and Very Persistent and Very Mobile (VPvM) Substances. Environ. Sci. Technol. 2020, 54 (23), 14790–14792. 10.1021/acs.est.0c05257. PubMed DOI
Reemtsma T.; Berger U.; Arp H. P. H.; Gallard H.; Knepper T. P.; Neumann M.; Quintana J. B.; Voogt P. de. Mind the Gap: Persistent and Mobile Organic Compounds—Water Contaminants That Slip Through. Environ. Sci. Technol. 2016, 50 (19), 10308–10315. 10.1021/acs.est.6b03338. PubMed DOI
Arp H. P. H.; Hale S. E.. REACH: Improvement of Guidance and Methods for the Identification and Assessment of PMT/VPvM Substances, 2019.
Neuwald I.; Muschket M.; Zahn D.; Berger U.; Seiwert B.; Meier T.; Kuckelkorn J.; Strobel C.; Knepper T. P.; Reemtsma T. Filling the Knowledge Gap: A Suspect Screening Study for 1310 Potentially Persistent and Mobile Chemicals with SFC- and HILIC-HRMS in Two German River Systems. Water Res. 2021, 204, 117645.10.1016/j.watres.2021.117645. PubMed DOI
Armitage J. M.; Erickson R. J.; Luckenbach T.; Ng C. A.; Prosser R. S.; Arnot J. A.; Schirmer K.; Nichols J. W. Assessing the Bioaccumulation Potential of Ionizable Organic Compounds: Current Knowledge and Research Priorities. Environ. Toxicol. Chem. 2017, 36 (4), 882–897. 10.1002/etc.3680. PubMed DOI PMC
Escher B. I.; Abagyan R.; Embry M.; Klüver N.; Redman A. D.; Zarfl C.; Parkerton T. F. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals. Environ. Toxicol. Chem. 2020, 39 (2), 269–286. 10.1002/etc.4602. PubMed DOI
Chiou C. T.; Peters L. J.; Freed V. H. A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds. Science 1979, 206 (4420), 831–832. 10.1126/science.206.4420.831. PubMed DOI
Karickhoff S. W.; Brown D. S.; Scott T. A. Sorption of Hydrophobic Pollutants on Natural Sediments. Water Res. 1979, 13 (3), 241–248. 10.1016/0043-1354(79)90201-X. DOI
Hamaker J.; Thompson J.. Adsorption. In Goring GAI, Hamaker JW (eds) Organic Chemicals in the Soil Environment, Vol 1. Dekker; New York, 1972; pp 49–143.
Kile D. E.; Chiou C. T.; Zhou H..; Li H..; Xu O.. Partition of Nonpolar Organic Pollutants from Water to Soil and Sediment Organic Matters. Environ. Sci. Technol. 1995, 29 (5), 1401–1406. 10.1021/es00005a037. PubMed DOI
Niederer C.; Schwarzenbach R. P.; Goss K. U. Elucidating Differences in the Sorption Properties of 10 Humic and Fulvic Acids for Polar and Nonpolar Organic Chemicals. Environ. Sci. Technol. 2007, 41 (19), 6711–6717. 10.1021/es0709932. PubMed DOI
Cornelissen G.; Gustafsson O.; Bucheli T.; Jonker M.; Koelmans A.; van Noort P. Extensive Sorption of Organic Compounds to Black Carbon, Coal, and Kergen in Sediments and Soils: Mechanisms and Consequences for Distribution, Bioaccumulation, and Biodegradation. Environ. Sci. Technol. 2005, 39 (18), 6881–6895. 10.1021/es050191b. PubMed DOI
ECHA, E. C. A . Guidance on Biocides Legislation: Vol. IV Environment, Assessment & Evaluation (Parts B+C), 2017.
FAO . Assessing Soil Contamination A Reference Manual; Food and Agriculture Organization - Information Division, 2000.
Doucette W. J. Quantitative Structure-Activity Relationships for Predicting Soil-Sediment Sorption Coefficients for Organic Chemicals. Environ. Toxicol. Chem. 2003, 22 (8), 1771–1788. 10.1897/01-362. PubMed DOI
Jafvert C. T.; Westall J. C.; Grieder E.; Schwarzenbach R. P. Distribution of Hydrophobic Ionogenic Organic Compounds between Octanol and Water: Organic Acids. Environ. Sci. Technol. 1990, 24 (12), 1795–1803. 10.1021/es00082a002. DOI
Westall J. C.; Leuenberger C.; Schwarzenbach R. P. Influence of PH and Ionic Strength on the Aqueous-Nonaqueous Distribution of Chlorinated Phenols. Environ. Sci. Technol. 1985, 19 (2), 193–198. 10.1021/es00132a014. DOI
Neumann M.; Schliebner I.. Protecting the Sources of Our Drinking Water: The Criteria for Identifying Persistent, Mobile and Toxic (PMT) Substances and Very Persistent and Very Mobile (VPvM) Substances under EU Regulation REACH (EC) No 1907/2006; Umweltbundesamt, 2019.
USEPA . Estimation Programs Interface SuiteTM for Microsoft® Windows, v 4.11; United States Environmental Protection Agency: Washington, DC, 2012.
Mannhold R.; Poda G. I.; Ostermann C.; Tetko I. V. Calculation of Molecular Lipophilicity: State-of-the-Art and Comparison of LogP Methods on More than 96,000 Compounds. J. Pharm. Sci. 2009, 98 (3), 861–893. 10.1002/jps.21494. PubMed DOI
Kleber M.; Bourg I. C.; Coward E. K.; Hansel C. M.; Myneni S. C. B.; Nunan N. Dynamic Interactions at the Mineral–Organic Matter Interface. Nature Reviews Earth & Environment 2021, 2, 1–20. 10.1038/s43017-021-00162-y. DOI
Sibley S. D.; Pedersen J. A. Interaction of the Macrolide Antimicrobial Clarithromycin with Dissolved Humic Acid. Environ. Sci. Technol. 2008, 42 (2), 422–428. 10.1021/es071467d. PubMed DOI
Droge S.; Goss K.-U. Effect of Sodium and Calcium Cations on the Ion-Exchange Affinity of Organic Cations for Soil Organic Matter. Environ. Sci. Technol. 2012, 46 (11), 5894–5901. 10.1021/es204449r. PubMed DOI
Droge S. T. J.; Goss K.-U. Sorption of Organic Cations to Phyllosilicate Clay Minerals: CEC-Normalization, Salt Dependency, and the Role of Electrostatic and Hydrophobic Effects. Environ. Sci. Technol. 2013, 47 (24), 14224–14232. 10.1021/es403187w. PubMed DOI
Chandler D. Interfaces and the Driving Force of Hydrophobic Assembly. Nature 2005, 437 (7059), 640–647. 10.1038/nature04162. PubMed DOI
Lazaridis T. Solvent Size vs Cohesive Energy as the Origin of Hydrophobicity. Acc. Chem. Res. 2001, 34 (12), 931–937. 10.1021/ar010058y. PubMed DOI
Southall N. T.; Dill K. A.; Haymet A. D. J. A View of the Hydrophobic Effect. J. Phys. Chem. B 2002, 106 (3), 521–533. 10.1021/jp015514e. DOI
Bronner G.; Goss K. U. Predicting Sorption of Pesticides and Other Multifunctional Organic Chemicals to Soil Organic Carbon. Environ. Sci. Technol. 2011, 45 (4), 1313–1319. 10.1021/es102553y. PubMed DOI
Arp H. P. H.; Hale S. E.. On the Persistence and Mobility of Organic Contaminants Detected in Freshwater Resources. in prep. PubMed PMC
OECD . eChemPortal : The Global Portal to Information on Chemical Substances https://www.echemportal.org/echemportal/ (accessed 2022/01/05).
Arp H. P. H.; Brown T. N.; Berger U.; Hale S. E. Ranking REACH Registered Neutral, Ionizable and Ionic Organic Chemicals Based on Their Aquatic Persistency and Mobility. Environmental Science: Processes and Impacts 2017, 19 (7), 939–955. 10.1039/C7EM00158D. PubMed DOI
McBride M. B.Environmental Chemistry of Soils; Oxford University Press, 1994.
Xiao F.; Pignatello J. J. Effect of Adsorption Nonlinearity on the Ph-Adsorption Profile of Ionizable Organic Compounds. Langmuir 2014, 30 (8), 1994–2001. 10.1021/la403859u. PubMed DOI
Donnan F. G. Theory of Membrane Equilibria and Membrane Potentials in the Presence of Non-Dialysing Electrolytes. A Contribution to Physical-Chemical Physiology. J. Membr. Sci. 1995, 100 (1), 45–55. 10.1016/0376-7388(94)00297-C. DOI
Schönsee C. D.; Wettstein F. E.; Bucheli T. D. Phytotoxin Sorption to Clay Minerals. Environmental Sciences Europe 2021, 33 (1), 36.10.1186/s12302-021-00469-z. DOI
MacKay A. A.; Vasudevan D. Polyfunctional Ionogenic Compound Sorption: Challenges and New Approaches To Advance Predictive Models. Environ. Sci. Technol. 2012, 46 (17), 9209–9223. 10.1021/es301036t. PubMed DOI
Kah M.; Sigmund G.; Xiao F.; Hofmann T. Sorption of Ionizable and Ionic Organic Compounds to Biochar, Activated Carbon and Other Carbonaceous Materials. Water Res. 2017, 124, 673–692. 10.1016/j.watres.2017.07.070. PubMed DOI
Zhu D.; Hyun S.; Pignatello J. J.; Lee L. S. Evidence for Pi-Pi Electron Donor-Acceptor Interactions between Pi-Donor Aromatic Compounds and Pi-Acceptor Sites in Soil Organic Matter through PH Effects on Sorption. Environ. Sci. Technol. 2004, 38, 4361–4368. 10.1021/es035379e. PubMed DOI
Xiao F.; Pignatello J. J. Π+-π Interactions between (Hetero)Aromatic Amine Cations and the Graphitic Surfaces of Pyrogenic Carbonaceous Materials. Environ. Sci. Technol. 2015, 49 (2), 906–914. 10.1021/es5043029. PubMed DOI
Xiao F.; Pignatello J. J. Interactions of Triazine Herbicides with Biochar: Steric and Electronic Effects. Water Res. 2015, 80, 179–188. 10.1016/j.watres.2015.04.040. PubMed DOI
Li X.; Pignatello J. J.; Wang Y.; Xing B. New Insight into Adsorption Mechanism of Ionizable Compounds on Carbon Nanotubes. Environ. Sci. Technol. 2013, 47 (15), 8334–8341. 10.1021/es4011042. PubMed DOI
Yang Y.; Duan P.; Schmidt-Rohr K.; Pignatello J. J. Physicochemical Changes in Biomass Chars by Thermal Oxidation or Ambient Weathering and Their Impacts on Sorption of a Hydrophobic and a Cationic Compound. Environ. Sci. Technol. 2021, 55 (19), 13072–13081. 10.1021/acs.est.1c04748. PubMed DOI
Graber E. R.; Borisover M. D. Hydration-Facilitated Sorption of Specifically Interacting Organic Compounds by Model Soil Organic Matter. Environ. Sci. Technol. 1998, 32 (2), 258–263. 10.1021/es9705957. DOI
Graber E. R.; Borisover M. Exploring Organic Compound Interactions with Organic Matter: The Thermodynamic Cycle Approach. Colloids Surf., A 2005, 265 (1), 11–22. 10.1016/j.colsurfa.2005.02.039. DOI
Droge S. T. J.; Goss K.-U. Development and Evaluation of a New Sorption Model for Organic Cations in Soil: Contributions from Organic Matter and Clay Minerals. Environ. Sci. Technol. 2013, 47 (24), 14233–14241. 10.1021/es4031886. PubMed DOI
Sigmund G.; Gharasoo M.; Hüffer T.; Hofmann T. Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials. Environ. Sci. Technol. 2020, 54 (7), 4583–4591. 10.1021/acs.est.9b06287. PubMed DOI PMC
Parfitt R. L.; Giltrap D. J.; Whitton J. S. Contribution of Organic Matter and Clay Minerals to the Cation Exchange Capacity of Soils. null 1995, 26 (9–10), 1343–1355. 10.1080/00103629509369376. DOI
Haderlein S. B.; Weissmahr K. W.; Schwarzenbach R. P. Specific Adsorption of Nitroaromatic Explosives and Pesticides to Clay Minerals. Environ. Sci. Technol. 1996, 30 (2), 612–622. 10.1021/es9503701. DOI
European Commission . Setting out the Data Requirements for Plant Protection Products, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, 2013.
European Comission . Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions Chemicals Strategy for Sustainability Towards a Toxic-Free Environment COM/2020/667 Final, 2020.
Gustafson D. I. Groundwater Ubiquity Score: A Simple Method for Assessing Pesticide Leachability. Environ. Toxicol. Chem. 1989, 8 (4), 339–357. 10.1002/etc.5620080411. DOI
Chemicals legislation – revision of REACH Regulation to help achieve a toxic-free environment https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12959-Chemicals-legislation-revision-of-REACH-Regulation-to-help-achieve-a-toxic-free-environment_en (accessed 2021/11/05).
European Commission . European Commission Ad Hoc Meeting of CARACAL PBT/VPvB/PMT/VPvM Criteria 30 September 2021. Topic: Discussion on PMT/VPvM Possible Criteria in CLP. Ad-Hoc CA/03/2021. 9 Pp. Brussels. 2021; European Commission, 2021.
Soil Survey Staff, Natural Conservation Service, United States Department of Agriculture . Web Soil Survey https://websoilsurvey.nrcs.usda.gov/.
Joint Research Centre - European Soil Data Centre (ESDAC) . European Soil Database & Soil Properties https://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-soil-properties.
Endo S.; Goss K. U. Applications of Polyparameter Linear Free Energy Relationships in Environmental Chemistry. Environ. Sci. Technol. 2014, 48 (21), 12477–12491. 10.1021/es503369t. PubMed DOI
Abraham M. H.; William E.; Acree J. The Transfer of Neutral Molecules, Ions and Ionic Species from Water to Wet Octanol. Phys. Chem. Chem. Phys. 2010, 12 (40), 13182–13188. 10.1039/c0cp00695e. PubMed DOI
Abraham M. H.; Acree W. E. Descriptors for Ions and Ion-Pairs for Use in Linear Free Energy Relationships. Journal of Chromatography A 2016, 1430, 2–14. 10.1016/j.chroma.2015.07.023. PubMed DOI
Droge S. T. J.Sorption of Polar and Ionogenic Organic Chemicals. In Bioavailability of Organic Chemicals in Soil and Sediment; Ortega-Calvo J. J.; Parsons J. R., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, 2020; pp 43–80. 10.1007/698_2020_517. DOI
Schönsee C. D.; Wettstein F. E.; Bucheli T. D. Disentangling Mechanisms in Natural Toxin Sorption to Soil Organic Carbon. Environ. Sci. Technol. 2021, 55 (8), 4762–4771. 10.1021/acs.est.0c06634. PubMed DOI
Bi E.; Schmidt T. C.; Haderlein S. B. Practical Issues Relating to Soil Column Chromatography for Sorption Parameter Determination. Chemosphere 2010, 80 (7), 787–793. 10.1016/j.chemosphere.2010.05.006. PubMed DOI
Aumeier B. M.; Augustin A.; Thönes M.; Sablotny J.; Wintgens T.; Wessling M. Linking the Effect of Temperature on Adsorption from Aqueous Solution with Solute Dissociation. Journal of Hazardous Materials 2022, 429, 128291.10.1016/j.jhazmat.2022.128291. PubMed DOI
Schulze S.; Zahn D.; Montes R.; Rodil R.; Quintana J. B.; Knepper T. P.; Reemtsma T.; Berger U. Occurrence of Emerging Persistent and Mobile Organic Contaminants in European Water Samples. Water Res. 2019, 153, 80–90. 10.1016/j.watres.2019.01.008. PubMed DOI
Brusseau M. L.; Guo B. Air-Water Interfacial Areas Relevant for Transport of per and Poly-Fluoroalkyl Substances. Water Res. 2021, 207, 117785.10.1016/j.watres.2021.117785. PubMed DOI PMC