• This record comes from PubMed

Influence of beech and spruce on potentially toxic elements-related health risk of edible mushrooms growing on unpolluted forest soils

. 2022 Mar 30 ; 12 (1) : 5407. [epub] 20220330

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 35354891
PubMed Central PMC8967844
DOI 10.1038/s41598-022-09400-9
PII: 10.1038/s41598-022-09400-9
Knihovny.cz E-resources

Atmospheric deposition-related potentially toxic elements (PTEs) can contaminate mountain forest ecosystems. The influence of tree species is being increasingly recognised as an important factor in the deposition loads in forest soils. However, relevant modelling studies about the forest pollution with PTEs, concerning the tree species composition, are lacking. The aim of this study was to evaluate the effect of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.) on soil and mushroom pollution and the associated health risks to define their significance for pollution modelling. Therefore, topsoil samples and samples of eight edible mushroom species were taken from 51 mature beech- and spruce-dominated stands. The results showed that forest composition had an indirect influence on the PTEs contents in the topsoil; it significantly differentiated the relationship between PTEs and soil C as the beech stands showed significantly increasing PTEs content with increasing C content. Despite the absence of soil pollution, above-limit levels of Cd and Zn were found in mushrooms. The total content of PTEs in mushrooms posed a potential health risk to consumers in 82% of the samples. The most Cd-contaminated and potentially the riskiest species for consumption was Xerocomellus pruinatus (Fr. and Hök) Šutara. The results suggest that the source of PTEs for mushrooms is not only the soil but probably also the current wet deposition. The influence of the forest type on the accumulation of PTEs in mushrooms was confirmed mainly due to the strongly divergent behaviour of Zn in beech- vs. spruce-dominated stands. The results point to the need to evaluate mushroom contamination even in the contamination-unburdened forest areas. For future modelling of PTEs pollution in forests, it is necessary to differentiate the tree species composition.

See more in PubMed

Türtscher S, Berger P, Lindebner L, Berger TW. Declining atmospheric deposition of heavy metals over the last three decades is reflected in soil and foliage of 97 beech (Fagus sylvatica) stands in the Vienna Woods. Environ. Pollut. 2017;230:561–573. doi: 10.1016/j.envpol.2017.06.080. PubMed DOI PMC

Szopka K, Karczewska A, Jezierski P, Kabała C. Spatial distribution of lead in the surface layers of mountain forest soils, an example from the Karkonosze National Park, Poland. Geoderma. 2013;192:259–268. doi: 10.1016/j.geoderma.2012.08.022. DOI

Mazurek R, et al. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere. 2017;168:839–850. doi: 10.1016/j.chemosphere.2016.10.126. PubMed DOI

Suchara I, Sucharová J. Distribution of sulphur and heavy metals in forest floor humus of the Czech Republic. Water Air Soil Pollut. 2002;136:289–316. doi: 10.1023/A:1015235924991. DOI

de Vries W, Dobbertin MH, Solberg S, van Dobben HF, Schaub M. Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: an overview. Plant Soil. 2014;380:1–45. doi: 10.1007/s11104-014-2056-2. DOI

Kochergina YV, Udatný M, Penížek V, Mihaljevič M. Mobility of Pb, Zn, Cu and As in disturbed forest soils affected by acid rain. Environ. Monit. Assess. 2017;189:570. doi: 10.1007/s10661-017-6306-7. PubMed DOI

Sun X, Zhang L, Lv J. Spatial assessment models to evaluate human health risk associated to soil potentially toxic elements. Environ. Pollut. 2021;268:115699. doi: 10.1016/j.envpol.2020.115699. PubMed DOI

Helmisaari H-S, et al. Copper in scots pine forests around a heavy-metal smelter in south-western Finland. Water Air Soil Pollut. 1995;85:1727–1732. doi: 10.1007/BF00477229. DOI

Rocha L, et al. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity. Chemosphere. 2011;84:1495–1505. doi: 10.1016/j.chemosphere.2011.04.035. PubMed DOI

Komárek M, Chrastný V, Štíchová J. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area. Environ. Int. 2007;33:677–684. doi: 10.1016/j.envint.2007.02.001. PubMed DOI

Melgar MJ, Alonso J, García MA. Mercury in edible mushrooms and underlying soil: bioconcentration factors and toxicological risk. Sci. Total Environ. 2009;407:5328–5334. doi: 10.1016/j.scitotenv.2009.07.001. PubMed DOI

Sun L, Chang W, Bao C, Zhuang Y. Metal contents, bioaccumulation, and health risk assessment in wild edible boletaceae mushrooms. J. Food Sci. 2017;82:1500–1508. doi: 10.1111/1750-3841.13698. PubMed DOI

Kalač P, Burda J, Stakova I. Concentrations of lead, cadmium, mercury and copper in mushrooms in the vicinity of a lead smelter. Sci. Total Environ. 1991;105:109–119. doi: 10.1016/0048-9697(91)90333-A. PubMed DOI

Cejpková J, et al. Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area. Environ. Pollut. 2016;218:176–185. doi: 10.1016/j.envpol.2016.08.009. PubMed DOI

Nováčková J, Fiala P, Chrastný V, Svoboda L, Kalač P. Contents of mercury, cadmium and lead in edible mushrooms and in uderlying substrates from a rural area with an occurrence of serpentines and amphiboles. Ekol. (Bratislava) 2007;26:322–329.

Pecina V, et al. Vertical distribution of mercury in forest soils and its transfer to edible mushrooms in relation to tree species. Forests. 2021;12:539. doi: 10.3390/f12050539. DOI

Cocchi L, Vescovi L, Petrini LE, Petrini O. Heavy metals in edible mushrooms in Italy. Food Chem. 2006;98:277–284. doi: 10.1016/j.foodchem.2005.05.068. DOI

Kalač P. Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem. 2010;122:2–15. doi: 10.1016/j.foodchem.2010.02.045. DOI

MZe. Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2019 (in Czech). (Ministerstvo zemědělství (MZe), 2020).

Augusto L, Ranger J, Binkley D, Rothe A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 2002;59:233–253. doi: 10.1051/forest:2002020. DOI

Vannier C, Didon-Lescot J-F, Lelong F, Guillet B. Distribution of sulphur forms in soils from beech and spruce forests of Mont Lozre (France) Plant Soil. 1993;154:197–209. doi: 10.1007/BF00012525. DOI

Rothe A, Huber C, Kreutzer K, Weis W. Deposition and soil leaching in stands of Norway spruce and European beech: results from the Höglwald research in comparison with other European case studies. Plant Soil. 2002;240:33–45. doi: 10.1023/A:1015846906956. DOI

Berger TW, Untersteiner H, Schume H, Jost G. Throughfall fluxes in a secondary spruce (Picea abies), a beech (Fagus sylvatica) and a mixed spruce-beech stand. For. Ecol. Manag. 2008;255:605–618. doi: 10.1016/j.foreco.2007.09.030. DOI

Łukasik, A., Gruba, P. & Magiera, T. Application of magnetometry to assess distribution of dust pollution in topsoil of under-crown area of Norway spruce (Picea abies Karst.) and European beech (Fagus sylvatica L.). CATENA150, 246–255 (2017).

Vitasse Y, et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Change Biol. 2019;25:3781–3792. doi: 10.1111/gcb.14803. PubMed DOI

Sithole SC, Mugivhisa LL, Amoo SO, Olowoyo JO. Pattern and concentrations of trace metals in mushrooms harvested from trace metal-polluted soils in Pretoria, South Africa. South African J. Bot. 2017;108:315–320. doi: 10.1016/j.sajb.2016.08.010. DOI

Novák M, et al. Origin of lead in eight central european peat bogs determined from isotope ratios, strengths, and operation times of regional pollution sources. Environ. Sci. Technol. 2003;37:437–445. doi: 10.1021/es0200387. PubMed DOI

CHMI. Pětileté průměrné koncentrace. (2021).

CHMI. Denní data dle zákona 123/1998 Sb. Czech Hydrometeorological Institute (2021).

Novotný R, Pecina V, Černý J, Valtera M, Juřička D. Influence of Norway spruce and European beech on Cd, Cu, Pb and Zn content in the surface horizons of forest soils in the area of the Jeseníky Mountains. Zprávy lesnického výzkumu. 2021;66:86–94.

Pecina V, et al. Human health and ecological risk assessment of trace elements in urban soils of 101 cities in China: a meta-analysis. Chemosphere. 2021;267:129215. doi: 10.1016/j.chemosphere.2020.129215. PubMed DOI

VROM. Circular on Target Values and Intervention Values for Soil Remediation. (Dutch Ministry of Housing Spatial Planning and Environment (VROM), 2013).

Decree No. 153/2016 Coll. Vyhláška č. 153/2016 Sb. ze dne 9. května 2016 o stanovení podrobností ochrany kvality zemědělské půdy a o změně vyhlášky č. 13/1994 Sb., kterou se upravují některé podrobnosti ochrany zemědělského půdního fondu (in Czech).

Decree No. 298/1997 Coll. Vyhláška č. 298/1997 Sb. ze dne 28. listopadu 1997 kterou se stanoví chemické požadavky na zdravotní nezávadnost jednotlivých druhů potravin a potravinových surovin, podmínky jejich použití, jejich označování na obalech, požadavky na čistotu a identitu přídatných látek a potravních doplňků a mikrobiologické požadavky na potravní doplňky a látky přídatné (in Czech).

Decree No. 53/2002 Coll. Vyhláška č. 53/2002 Sb. ze dne 29. ledna 2002 kterou se stanoví chemické požadavky na zdravotní nezávadnost jednotlivých druhů potravin a potravinových surovin, podmínky použití látek přídatných, pomocných a potravních doplňků (in Czech).

Frankowska A, Ziółkowska J, Bielawski L, Falandysz J. Profile and bioconcentration of minerals by King Bolete (Boletus edulis) from the Płocka Dale in Poland. Food Add. Contam. B. 2010;3:1–6. doi: 10.1080/19440040903505232. PubMed DOI

Liu B, et al. Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem. 2015;188:294–300. doi: 10.1016/j.foodchem.2015.05.010. PubMed DOI

Sarikurkcu C, Popović-Djordjević J, Solak MH. Wild edible mushrooms from Mediterranean region: Metal concentrations and health risk assessment. Ecotoxicol. Environ. Saf. 2020;190:110058. doi: 10.1016/j.ecoenv.2019.110058. PubMed DOI

USEPA. Regional Screening Level (RSL) Resident Soil Table (TR=1E-06, HQ=1) May 2020 (corrected). US Environmental Protection Agency (2020).

Koutrotsios G, Danezis GP, Georgiou CA, Zervakis GI. Rare earth elements concentration in mushroom cultivation substrates affects the production process and fruit-bodies content of Pleurotus ostreatus and Cyclocybe cylindracea. J. Sci. Food Agric. 2018;98:5418–5427. doi: 10.1002/jsfa.9085. PubMed DOI

IHIS CR. European Health Interview Survey in CR - EHIS CR (Body Mass Index, physical activity, consumption of fruits and vegetables). (Institute of Health Information and Statistics of the Czech Republic, 2010).

Magiera T, Strzyszcz Z, Rachwal M. Mapping particulate pollution loads using soil magnetometry in urban forests in the Upper Silesia Industrial Region, Poland. For. Ecol. Manag. 2007;248:36–42. doi: 10.1016/j.foreco.2007.02.034. DOI

Bravo S, et al. Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain) J. Geochem. Explor. 2017;174:79–83. doi: 10.1016/j.gexplo.2015.12.012. DOI

Augusto L, Bonnaud P, Ranger J. Impact of tree species on forest soil acidification. For. Ecol. Manag. 1998;105:67–78. doi: 10.1016/S0378-1127(97)00270-3. DOI

IAEI. Zpráva o stavu zemědělství ČR za rok 2018. Ministerstvo zemědělství. (2019).

Svoboda L, Chrastný V. Levels of eight trace elements in edible mushrooms from a rural area. Food Add. Contam. A. 2008;25:51–58. doi: 10.1080/02652030701458519. PubMed DOI

Alonso J, Garcia MA, Pérez-López M, Melgar MJ. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch. Environ. Contam. Toxicol. 2003;44:180–188. doi: 10.1007/s00244-002-2051-0. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...