Fabrication of monolithic capillary columns with inner diameter 50-530 μm employing a mixture of pentaerythritol tetraacrylate and polyhedral oligomeric silsesquioxane-methacrylate as crosslinkers
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35355408
DOI
10.1002/jssc.202200176
Knihovny.cz E-zdroje
- Klíčová slova
- inverse size-exclusion chromatography, methacrylate, monoliths, porosity, silsesquioxane,
- MeSH
- akryláty * MeSH
- methakryláty * chemie MeSH
- polymerizace MeSH
- poréznost MeSH
- propylenglykoly MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akryláty * MeSH
- methakryláty * MeSH
- pentaerythritol tetraacrylate MeSH Prohlížeč
- propylenglykoly MeSH
Highly crosslinked monolithic capillary columns with inner diameters in the range of 50-530 μm were prepared by radical polymerization of pentaerythritol tetraacrylate, polyhedral oligomeric silsesquioxane-methacrylate, and n-octadecyl methacrylate in the presence of methanol, dodecyl alcohol, and polyethylene glycol lauryl ether. Columns were evaluated by inverse size-exclusion chromatography employing a set of polystyrene standards of narrow molecular-size distribution and by scanning electron microscopy. Chromatographic performance under reversed-phase conditions was also evaluated. The combination of two effective crosslinkers as pentaerythritol tetraacrylate and polyhedral oligomeric silsesquioxane-methacrylate in the polymerization mixture allows for the preparation of robust and efficient monolithic capillary columns within a fairly wide range of internal diameters.
Zobrazit více v PubMed
Trojer L, Lubbad SH, Bisjak CP, Wieder W, Bonn GB. Comparison between monolithic conventional size, microbore and capillary poly(p-methylstyrene-co-1,2-bis(p-vinylphenyl)ethane) high-performance liquid chromatography columns: Synthesis, application, long-term stability and reproducibility. J Chromatogr A. 2007;1146:216-24.
He M, Zeng Y, Sun X, Harrison DJ. Confinement effects on the morphology of photopatterned porous polymer monoliths for capillary and microchip electrophoresis of proteins. Electrophoresis 2008;29:2980-6.
Abdulhussain N, Nawada S, Currivan S, Schoenmakers P. Fabrication of monolithic frits and columns for chip-based multidimensional separation devices. J Sep Sci. Published online January 23, 2022. DOI: 10.1002/jssc.202100901
Ghanem A, Ikegami T. Recent advances in silica-based monoliths: Preparations, characterizations and applications. J Sep Sci. 2011;34:1945-57.
Liu K, Aggarwal P, Lawson JS, Tolley, HD, Lee ML. Organic monoliths for high-performance reversed-phase liquid chromatography. J Sep Sci. 2013;36:2767-81.
Aydoğan C, Gökaltun A, Denizli A, El-Rassi Z. Organic polymer-based monolithic capillary columns and their applications in food analysis. J Sep Sci. 2019;42:962-79.
Connolly D, Currivan S, Paull B. Polymeric monolithic materials modified with nanoparticles for separation and detection of biomolecules: a review. Proteomics 2012;12:2904-17.
Ou J, Liu Z, Wang H, Lin H, Dong J, Zou H. Recent development of hybrid organic-silica monolithic columns in CEC and capillary LC. Electrophoresis 2015;36:62-75.
Zajickova Z. Advances in the development and applications of organic-silica hybrid monoliths. J Sep Sci. 2017;40:25-48.
Lv Y, Tan X, Svec F. Preparation and applications of monolithic structures containing metal-organic frameworks. J Sep Sci. 2017;40:272-87.
Fikarova K, Moore E, Nicolau A, Horstkotte B, Maya F. Recent trends on the implementation of reticular materials in column-centered separations. J Sep Sci. Published online January 25, 2022. DOI: 10.1002/jssc.202100849
Hara T, Kobayashi H, Ikegami T, Nakanishi K, Tanaka N. Performance of monolithic silica capillary columns with increased phase ratios and small-sized domains. Anal Chem. 2006;78:7632-42.
Kanamori K, Yonezawa H, Nakanishi K, Hirao K, Jinnai H. Structural formation of hybrid siloxane-based polymer monolith in confined spaces. J Sep Sci. 2004;27:874-86.
Motokawa M, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Jinnai H, Hosoya K, Ikegami T, Tanaka N. Monolithic silica columns with various skeleton sizes and through-pore sizes for capillary liquid chromatography. J Chromatogr A. 2002;961:53-63.
Motokawa M, Ohira M, Minakuchi H, Nakanishi K, Tanaka N. Performance of octadecylsilylated monolithic silica capillary columns of 530 μm inner diameter in HPLC. J Sep Sci. 2006;29:2471-7.
Šesták J, Moravcová D, Křenková J, Planeta J, Roth M, Foret F. Bridged polysilsesquioxane-based wide-bore monolithic capillary columns for hydrophilic interaction chromatography. J Chromatogr A. 2017;1479:204-9.
Jandera P. Advances in the development of organic polymer monolithic columns and their applications in food analysis-a review. J Chromatogr A. 2013;1313:37-53.
Urban J. Current trends in the development of porous polymer monoliths for the separation of small molecules. J Sep Sci. 2016;39:51-68.
Rathnasekara R, Khadka S, Jonnada M, El Rassi Z. Polar and nonpolar organic polymer-based monolithic columns for capillary electrochromatography and high-performance liquid chromatography. Electrophoresis 2017;38:60-79.
Coufal P, Čihák M, Suchánková J, Tesařová E, Bosáková Z, Štulı́k K. Methacrylate monolithic columns of 320 μm i.d. for capillary liquid chromatography. J Chromatogr A. 2002;946:99-106.
Moravcová D, Jandera P, Urban J, Planeta J. Characterization of polymer monolithic stationary phases for capillary HPLC. J Sep Sci. 2003;26:1005-16.
Huang X, Wang Q, Yan H, Huang Y, Huang B. Octyl-type monolithic columns of 530 μm i.d. for capillary liquid chromatography. J Chromatogr A. 2005;1062:183-8.
Urban J, Eeltink S, Jandera P, Schoenmakers PJ. Characterization of polymer-based monolithic capillary columns by inverse size-exclusion chromatography and mercury-intrusion porosimetry. J Chromatogr A. 2008;1182:161-8.
Svobodová A, Křížek T, Širc J, Šálek P, Tesařová E, Coufal P, Štulík K. Monolithic columns based on a poly(styrene-divinylbenzene-methacrylic acid) copolymer for capillary liquid chromatography of small organic molecules. J Chromatogr A. 2011;1218:1544-7.
Turson M, Zhou M, Jiang P, Dong X. Monolithic poly(ethylhexyl methacrylate-co-ethylene dimethacrylate) column with restricted access layers prepared via reversible addition-fragmentation chain transfer polymerization. J Sep Sci. 2011;34:127-34.
Nischang I, Brüggemann O. On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths. J Chromatogr A. 2010;1217:5389-97.
Urban J, Svec F, Fréchet JMJ. Hypercrosslinking: New approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. J Chromatogr A. 2010;1217:8212-21.
Hilder EF, Svec F, Frechet JMJ. Latex-functionalized monolithic columns for the separation of carbohydrates by micro anion-exchange chromatography. J Chromatogr A. 2004;1053:101-6.
Krenkova J, Foret, F. Iron oxide nanoparticle coating of organic polymer-based monolithic columns for phosphopeptide enrichment. J Sep Sci. 2011;34:2106-12.
Chambers SD, Holcombe TW, Svec F, Frechet JMJ. Porous polymer monoliths functionalised through copolymerisation of a C60 fullerene-containing methacrylates monomer for highly efficient separations of small molecules. Anal Chem. 2011;83:9478-84.
Lin H, Ou JJ, Tang SW, Zhang ZB, Dong J, Liu ZS, Zou HF. Facile preparation of a stable and functionalizable hybrid monolith via ring-opening polymerization for capillary liquid chromatography. J Chromatogr A. 2013;1301:131-8.
Günyel Z, Aslan H, Demir N, Aydoğan C. Nano-liquid chromatography with a new nano-structured monolithic nanocolumn for proteomics analysis. J Sep Sci. 2021;44:3996-4004.
Wu MH, Wu RA, Li RB, Qin HQ, Dong J, Zhang ZB, Zou HF. Polyhedral Oligomeric Silsesquioxane as a Cross-linker for Preparation of Inorganic−Organic Hybrid Monolithic Columns. Anal Chem. 2010;82:5447-54.
Qiao X, Chen R, Yan H, Shen S. Polyhedral oligomeric silsesquioxane-based hybrid monolithic columns: Recent advances in their preparation and their applications in capillary liquid chromatography. TrAC. 2017;97:50-64.
Planeta J, Karásek P, Vejrosta J. Development of packed capillary columns using carbon dioxide slurries. J Sep Sci. 2003;26:525-30.
Moravcová D, Planeta J, King AWT, Wiedmer SK. Immobilization of a phosphonium ionic liquid on a silica monolith for hydrophilic interaction chromatography. J Chromatogr A. 2018;1552:53-9.
Al-Bokari M, Cherrak D, Guiochon G. Determination of the porosities of monolithic columns by inverse size-exclusion chromatography. J Chromatogr A. 2002;975:275-84.
Yao Y, Lenhoff AM. Determination of pore size distributions of porous chromatographic adsorbents by inverse size-exclusion chromatography. J Chromatogr A. 2004;1037:273-82.
Neue UD. HPLC columns: theory, technology, and practice. New York: Wiley-VCH; 1997.
Gu C, Lin L, Chen X, Jia J, Wu D, Fang N. Analysis of microcystins by capillary high performance liquid chromatography using a polymethacrylate-based monolithic column. J Sep Sci. 2007;30:2866-73.
Li YY, Tolley HD, Lee ML. Poly[hydroxyethyl acrylate-co-poly(ethylene glycol) diacrylate] monolithic column for efficient hydrophobic interaction chromatography of proteins. Anal Chem. 2009;81:9416-24.