Neuroplasticity in Motor Learning Under Variable and Constant Practice Conditions-Protocol of Randomized Controlled Trial
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35370573
PubMed Central
PMC8967977
DOI
10.3389/fnhum.2022.773730
Knihovny.cz E-zdroje
- Klíčová slova
- motor learning, neuroplasticity, practice conditions, sensorimotor cortex activity, specificity of practice, variability of practice,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: There is numerous literature on mechanisms underlying variability of practice advantages. Literature includes both behavioral and neuroimaging studies. Unfortunately, no studies are focusing on practice in constant conditions to the best of our knowledge. Hence it is essential to assess possible differences in mechanisms of neuroplasticity between constant vs. variable practice conditions. The primary objectives of the study described in this protocol will be: (1) to determine the brain's structural and functional changes following constant and variable practice conditions in motor learning (structural and functional magnetic resonance imaging, MRI); (2) to determine the EEG activation and connectivity between cognitive, sensory, and motor cerebral cortex areas (central, temporal, parietal, occipital) in constant and variable practice conditions and as a function of practice time. METHODS: The study will follow the interventional (experimental) design with two arms (parallel groups). Fifty participants will be randomly assigned to two groups practicing in constant (CG) and variable conditions (VG). CG will be practicing only one pattern of step isometric contractions during unimanual index finger abduction, i.e., 90 trials in all training sessions, whereas VG will practice three different patterns. Each will be practiced 30 times per session in variable conditions. Resting-state fMRI, EEG (cortical networking), and motor task proficiency will be examined before (pre-) and after practice (post- and retentions tests). DISCUSSION: Findings will enhance our understanding of structural and functional neural changes following practice in constant and variable conditions. Therefore, the study can be considered pure (basic) research (clinical research in healthy individuals). CLINICAL TRIAL REGISTRATION: Study registered at clinicaltrials.gov (ID# NCT04921072) on 9 June 2021. Last version update: 21 December 2021.The protocol has been prepared according to the complete SPIRIT checklist (http://www.spirit-statement.org/), although the item order has been modified in order to comply with the manuscript structure.
Faculty of Sport Studies Masaryk University Brno Czechia
Surgeon General Office of the Slovak Armed Forces Ružomberok Slovakia
Zobrazit více v PubMed
Ashburner J., Friston K. J. (2000). Voxel-based morphometry—the methods. Neuroimage 11, 805–821. 10.1006/nimg.2000.0582 PubMed DOI
Beek P. J., Lewbel A. (1995). The science of juggling. Sci. Am. 273, 92–97.
Behrens T. E. J., Berg H. J., Jbabdi S., Rushworth M. F. S., Woolrich M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain. Neuroimage 34, 144–155. 10.1016/j.neuroimage.2006.09.018 PubMed DOI PMC
Borson S., Scanlan J. M., Chen P., Ganguli M. (2003). The mini-cog as a screen for dementia: validation in a population-based sample. J. Am. Geriatr. Soc. 51, 1451–1454. 10.1046/j.1532-5415.2003.51465.x PubMed DOI
Boyke J., Driemeyer J., Gaser C., Büchel C., May A. (2008). Training-induced brain structure changes in the elderly. J. Neurosci. 28, 7031–7035. 10.1523/JNEUROSCI.0742-08.2008 PubMed DOI PMC
Breslin G., Hodges N. J., Steenson A., Williams A. M. (2012). Constant or variable practice: recreating the especial skill effect. Acta Psychol. (Amst). 140, 154–157. 10.1016/j.actpsy.2012.04.002 PubMed DOI
Busk J., Galbraith G. (1975). EEG correlates of visual-motor practice in man. Electroencephalogr. Clin. Neurophysiol. 38, 415–422. 10.1016/0013-4694(75)90265-5 PubMed DOI
Cheng M.-Y., Hung C.-L., Huang C.-J., Chang Y.-K., Lo L.-C., Shen C., et al. (2015). Expert-novice differences in SMR activity during dart throwing. Biol. Psychol. 110, 212–218. 10.1016/j.biopsycho.2015.08.003 PubMed DOI
Czyż S. H. (2021). Variability of practice, information processing and decision making—how much do we know? Front. Psychol. 12:639131. 10.3389/fpsyg.2021.639131 PubMed DOI PMC
Czyż S. H., Moss S. J. (2016). Specificity vs. generalizability: emergence of especial skills in classical archery. Front. Psychol. 7:1178. 10.3389/fpsyg.2016.01178 PubMed DOI PMC
Dean A., Sullivan K., Soe M. (2013). OpenEpi: open source epidemiologic statistics for public health. Available Online at: http://www.openepi.com/Menu/OE_Menu.htm. Accessed April 23, 2019.
Debowska W., Wolak T., Nowicka A., Kozak A., Szwed M., Kossut M. (2016). Functional and structural neuroplasticity induced by short-term tactile training based on braille reading. Front. Neurosci. 10:460. 10.3389/fnins.2016.00460 PubMed DOI PMC
Deeny S. P., Haufler A. J., Saffer M., Hatfield B. D. (2009). Electroencephalographic coherence during visuomotor performance: a comparison of cortico-cortical communication in experts and novices. J. Mot. Behav. 41, 106–116. 10.3200/JMBR.41.2.106-116 PubMed DOI
Deeny S. P., Hillman C. H., Janelle C. M., Hatfield B. D. (2003). Cortico-cortical communication and superior performance in skilled marksmen: an EEG coherence analysis. J. Sport Exerc. Psychol. 25, 188–204. 10.1123/jsep.25.2.188 DOI
Doyon J., Bellec P., Amsel R., Penhune V., Monchi O., Carrier J., et al. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav. Brain Res. 199, 61–75. 10.1016/j.bbr.2008.11.012 PubMed DOI
Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., May A. (2004). Changes in grey, matter induced by training. Nature 427, 311–312. 10.1038/427311a PubMed DOI
Draganski B., Kherif F., Lutti A. (2014). Computational anatomy for studying use-dependant brain plasticity. Front. Hum. Neurosci. 8:380. 10.3389/fnhum.2014.00380 PubMed DOI PMC
Egner T., Gruzelier J. H. (2001). Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. Neuroreport 12, 4155–4159. 10.1097/00001756-200112210-00058 PubMed DOI
Egner T., Gruzelier J. H. (2003). Ecological validity of neurofeedback: Modulation of slow wave EEG enhances musical performance. Neuroreport 14, 1221–1224. 10.1097/01.wnr.0000081875.45938.d1 PubMed DOI
Fischl B., Salat D. H., Busa E., Albert M., Dieterich M., Haselgrove C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355. 10.1016/s0896-6273(02)00569-x PubMed DOI
Floyer-Lea A., Matthews P. M. (2005). Distinguishable brain activation networks for short- and long-term motor skill learning. J. Neurophysiol. 94, 512–518. 10.1152/jn.00717.2004 PubMed DOI
Keetch K. M., Schmidt R. A., Lee T. D., Young D. E. (2005). Especial skills: their emergence with massive amounts of practice. J. Exp. Psychol. Hum. Percept. Perform. 31, 970–978. 10.1037/0096-1523.31.5.970 PubMed DOI
Kim T., Kim H., Wright D. L. (2021a). Improving consolidation by applying anodal transcranial direct current stimulation at primary motor cortex during repetitive practice. Neurobiol. Learn. Mem. 178:107365. 10.1016/j.nlm.2020.107365 PubMed DOI
Kim T., Wright D. L., Feng W. (2021b). Commentary: variability of practice, information processing and decision making—how much do we know? Front. Psychol. 12:685749. 10.3389/fpsyg.2021.685749 PubMed DOI PMC
Knapp C., Dixon W. (1952). Learning to juggle: II. a study of whole and part methods. Res. Q. 23, 398–401. 10.1080/10671188.1950.10624864 DOI
Lelis-Torres N., Ugrinowitsch H., Apolinário-Souza T., Benda R. N., Lage G. M. (2017). Task engagement and mental workload involved in variation and repetition of a motor skill. Sci. Rep. 7:14764. 10.1038/s41598-017-15343-3 PubMed DOI PMC
Lin C. H., Yang H. C., Knowlton B. J., Wu A. D., Iacoboni M., Ye Y. L., et al. (2018). Contextual interference enhances motor learning through increased resting brain connectivity during memory consolidation. Neuroimage 181, 1–15. 10.1016/j.neuroimage.2018.06.081 PubMed DOI
Loffing F., Sölter F., Hagemann N. (2014). Left preference for sport tasks does not necessarily indicate left-handedness: sport-specific lateral preferences, relationship with handedness and implications for laterality research in behavioural sciences. PLoS One 9:e105800. 10.1371/journal.pone.0105800 PubMed DOI PMC
Lohse K. R., Wadden K., Boyd L. A., Hodges N. J. (2014). Motor skill acquisition across short and long time scales: a meta-analysis of neuroimaging data. Neuropsychologia 59, 130–141. 10.1016/j.neuropsychologia.2014.05.001 PubMed DOI
Mang C. S., Borich M. R., Wadden K. P., Boyd L. A., Siengsukon C. F. (2020). “Motor skill learning and its neurophysiology,” in Skill Acquisition in Sport: Research, Theory and Practice, eds Hodges N. J., Williams A. M. (London, New York: Routledge; ), 293–312.
McCracken H. D., Stelmach G. E. (1977). A Test of the schema theory of discrete motor learning. J. Mot. Behav. 9, 193–201. 10.1080/00222895.1977.10735109 PubMed DOI
Nunez P. L., Silberstein R. B., Shi Z., Carpenter M. R., Srinivasan R., Tucker D. M., et al. (1999). EEG coherency II: experimental comparisons of multiple measures. Clin. Neurophysiol. 110, 469–486. 10.1016/s1388-2457(98)00043-1 PubMed DOI
Nunez P. L., Srinivasan R., Westdorp A. F., Wijesinghe R. S., Tucker D. M., Silberstein R. B., et al. (1997). EEG coherency I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging and interpretation at multiple scales. Electroencephalogr. Clin. Neurophysiol. 103, 499–515. 10.1016/s0013-4694(97)00066-7 PubMed DOI
Oldfield R. C. (1971). The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia 9, 97–113. 10.1016/0028-3932(71)90067-4 PubMed DOI
Schmidt R. A. (1975). A schema theory of discrete motor skill learning. Psychol. Rev. 82, 225–260. 10.1080/02701367.1981.10607893 PubMed DOI
Schmidt R. A. (2003). Motor schema theory after 27 years: reflections and implications for a new theory. Res. Q. Exerc. Sport 74, 366–375. 10.1080/02701367.2003.10609106 PubMed DOI
Schmidt R. A., Lee T. D. (2011). Motor Control and Learning: a Behavioral Emphasis. 5th Edn. Champaign, IL: Human Kinetics.
Smith S. M., Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T. E., Mackay C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–1505. 10.1016/j.neuroimage.2006.02.024 PubMed DOI
Van Rossum J. H. A. (1987). Motor Development and Practice: The Variability of Practice Hypothesis in Perspective. Amsterdam: Free University Press.
Vernon D., Egner T., Cooper N., Compton T., Neilands C., Sheri A., et al. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. Int. J. Psychophysiol. 47, 75–85. 10.1016/s0167-8760(02)00091-0 PubMed DOI
ClinicalTrials.gov
NCT04921072