The Role of the Complement System in Chronic Inflammatory Demyelinating Polyneuropathy: Implications for Complement-Targeted Therapies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35378684
PubMed Central
PMC9294101
DOI
10.1007/s13311-022-01221-y
PII: S1878-7479(23)01108-X
Knihovny.cz E-zdroje
- Klíčová slova
- CIDP, Complement inhibition, Complement system, Demyelination, Pathogenesis, Peripheral neuropathy,
- MeSH
- biopsie MeSH
- chronická zánětlivá demyelinizační polyneuropatie * diagnóza farmakoterapie MeSH
- lidé MeSH
- makrofágy patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common, heterogeneous, immune-mediated neuropathy, characterized by predominant demyelination of motor and sensory nerves. CIDP follows a relapsing-remitting or a progressive course and causes substantial disability. The pathogenesis of CIDP involves a complex interplay of multiple aberrant immune responses, creating a pro-inflammatory environment, subsequently inflicting damage on the myelin sheath. Though the exact triggers are unclear, diverse immune mechanisms encompassing cellular and humoral pathways are implicated. The complement system appears to play a role in promoting macrophage-mediated demyelination. Complement deposition in sural nerve biopsies, as well as signs of increased complement activation in serum and CSF of patients with CIDP, suggest complement involvement in CIDP pathogenesis. Here, we present a comprehensive overview of the preclinical and clinical evidence supporting the potential role of the complement system in CIDP. This understanding furnishes a strong rationale for targeting the complement system to develop new therapies that could serve the unmet needs of patients affected by CIDP, particularly in those refractory to standard therapies.
Brain and Mind Center University of Sydney Sydney Australia
Cedars Sinai Medical Center Los Angeles CA USA
Department of Neurology Heinrich Heine University Düsseldorf Germany
Department of Neurology Medical University of Vienna Vienna Austria
Department of Neurology Palacky University Olomouc Olomouc Czech Republic
Department of Neurology Thomas Jefferson University Hospital Philadelphia PA USA
Erasmus MC University Medical Center Rotterdam The Netherlands
Neuroimmunology National and Kapodistrian University of Athens Medical School Athens Greece
Zobrazit více v PubMed
Lewis RA, Muley SR. Chronic inflammatory demyelinating polyneuropathy: Etiology, clinical features, and diagnosis. In UpToDate. 2004. Available at: https://www.uptodate.com/contents/chronic-inflammatory-demyelinating-polyneuropathy-etiology-clinical-features-and-diagnosis. Accessed 14 Dec 2021.
Koike H, Nishi R, Ikeda S, et al. Ultrastructural mechanisms of macrophage-induced demyelination in CIDP. Neurology. 2018;91:1051–1060. PubMed
Van den Bergh PYK, van Doorn PA, Hadden RDM, et al. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force-second revision. J Peripher Nerv Syst. 2021;26:242–268. PubMed
Ryan M, Ryan SJ. Chronic inflammatory demyelinating polyneuropathy: considerations for diagnosis, management, and population health. Am J Manag Care. 2018;24:S371–S379. PubMed
Bunschoten C, Jacobs BC, Van den Bergh PYK, Cornblath DR, van Doorn PA. Progress in diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy. Lancet Neurol. 2019;18:784–794. PubMed
Querol L, Crabtree M, Herepath M, et al. Systematic literature review of burden of illness in chronic inflammatory demyelinating polyneuropathy (CIDP) J Neurol. 2021;268:3706–3716. PubMed PMC
Mahdi-Rogers M, Hughes RA. Epidemiology of chronic inflammatory neuropathies in southeast England. Eur J Neurol. 2014;21:28–33. PubMed
Allen JA, Butler L, Levine TD, Bullinger AL, Koski CL. CIDP disease burden — results of a US nationwide patient survey - GBS/CIDP Foundation International. 2019. Available at: https://www.gbs-cidp.org/cidp-disease-burden-results-of-a-us-nationwide-patient-survey. Accessed 14 Dec 2021.
Koike H, Katsuno M. Pathophysiology of chronic inflammatory demyelinating polyneuropathy: insights into classification and therapeutic strategy. Neurol Ther. 2020;9:213–227. PubMed PMC
Dalakas MC, Engel WK. Immunoglobulin and complement deposits in nerves of patients with chronic relapsing polyneuropathy. Arch Neurol. 1980;37:637–640. PubMed
Quast I, Keller CW, Hiepe F, Tackenberg B, Lunemann JD. Terminal complement activation is increased and associated with disease severity in CIDP. Ann Clin Transl Neurol. 2016;3:730–735. PubMed PMC
Mathey EK, Park SB, Hughes RA, et al. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. J Neurol Neurosurg Psychiatry. 2015;86:973–985. PubMed PMC
Querol L, Lleixa C. Novel immunological and therapeutic insights in Guillain‑Barré syndrome and CIDP. Neurotherapeutics. 2021;1–14. PubMed PMC
Shimizu F, Sawai S, Sano Y, et al. Severity and patterns of blood-nerve barrier breakdown in patients with chronic inflammatory demyelinating polyradiculoneuropathy: correlations with clinical subtypes. PLoS One. 2014;9:e104205. PubMed PMC
Kiefer R, Kieseier BC, Stoll G, Hartung HP. The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol. 2001;64(2):109–127. PubMed
Sommer C, Koch S, Lammens M, Gabreëls-Festen AA, Stoll G, Toyka KV. Macrophage clustering as a diagnostic marker in sural nerve biopsies of patients with CIDP. Neurology. 2005;65(12):1924-9. PubMed
Lubbers R, van Essen MF, van Kooten C. rouw LA. Production of complement components by cells of the immune system Clin Exp Immunol. 2017;188:183–194. PubMed PMC
Arnaut M. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood. 1990;75:1037–1050. PubMed
van Spriel AB, Leusen JHW, van Egmond M, et al. Mac-1 (CD11b/CD18) is essential for Fc receptor–mediated neutrophilcytotoxicity and immunologic synapse formation. Blood. 2001;97:2478–2486. PubMed
Dalakas MC; Medscape Advances in the diagnosis, pathogenesis and treatment of CIDP. Nat Rev Neurol. 2011;7:507–517. PubMed
Chi LJ, Xu WH, Zhang ZW, Huang HT, Zhang LM, Zhou J. Distribution of Th17 cells and Th1 cells in peripheral blood and cerebrospinal fluid in chronic inflammatory demyelinating polyradiculoneuropathy. J Peripher Nerv Syst. 2010;15:345–356. PubMed
Mausberg AK, Dorok M, Stettner M, et al. Recovery of the T-cell repertoire in CIDP by IV immunoglobulins. Neurology. 2013;80:296–303. PubMed
Albazli K, Kaminski HJ, Howard JF., Jr Complement inhibitor therapy for Myasthenia gravis. Front Immunol. 2020;11:917. PubMed PMC
Murata K, Dalakas MC. Expression of the costimulatory molecule BB-1, the ligands CTLA-4 and CD28, and their mRNA in inflammatory myopathies. Am J Pathol. 1999;155:453–460. PubMed PMC
Meyer Zu Hörste G, Hu W, Hartung HP, Lehmann HC, Kieseier BC. The immunocompetence of Schwann cells. Muscle Nerve. 2008;37:3–13. PubMed
Mathey EK, Pollard JD, Armati PJ. NF alpha, IFN gamma and IL-2 mRNA expression in CIDP sural nerve biopsies. J Neurol Sci. 1999;163(1):47–52. PubMed
Mahad DJ, Howell SJ, Woodroofe MN. Expression of chemokines in cerebrospinal fluid and serum of patients with chronic inflammatory demyelinating polyneuropathy. Neurol Neurosurg Psychiatry. 2002;73:320–323. PubMed PMC
Maimone D, Annunziata P, Simone IL, Livrea P, Guazzi GC. Interleukin-6 levels in the cerebrospinal fluid and serum of patients with Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. J Neuroimmunol. 1993;47:55–61. PubMed
Hartung HP, Reiners K, Schmidt B, Stoll G, Toyka KV. Serum interleukin-2 concentrations in Guillain-Barré syndrome and chronic idiopathic demyelinating polyradiculoneuropathy: comparison with other neurological diseases of presumed immunopathogenesis. Ann Neurol. 1991;30:48–53. PubMed
Schneider-Hohendorf T, Schwab N, Üçeyler N, Göbel K, Sommer C, Wiendl H. CD8+ T-cell immunity in chronic inflammatory demyelinating polyradiculoneuropathy. Neurology. 2012;78:402–408. PubMed
Dalakas MC. Pathogenesis of immune-mediated neuropathies. Biochim Biophys Acta. 2015;1852:658–666. PubMed
Hughes R, Dalakas MC, Merkies I, et al. Oral fingolimod for chronic inflammatory demyelinating polyradiculoneuropathy (FORCIDP Trial): a double-blind, multicentre, randomised controlled trial. Lancet Neurol. 2018;17:689–698. PubMed
Hughes RAC, Gorson KC, Cros D, et al. Intramuscular interferon beta-1a in chronic inflammatory demyelinating polyradiculoneuropathy. Neurology. 2010;74(8):651–657. PubMed
RMC Trial Group Randomized controlled trial of methotrexate for chronic inflammatory demyelinating polyradiculoneuropathy (RMC) trial: a pilot, multicentre study. Lancet Neurol. 2009;8(2):158–164. PubMed
Dyck PJ, O’Brien P, Swanson C, Low P, Daube J. Combined azathioprine and prednisone in chronic inflammatory-demyelinating neuropathy. Neurology. 1985;35(8):1173–1176. PubMed
Querol L, Devaux J, Rojas-Garcia R, Illa I. Autoantibodies in chronic inflammatory neuropathies: diagnostic and therapeutic implications. Nat Rev Neurol. 2017;13:533–547. PubMed
Sanvito L, Makowska A, Mahdi-Rogers M, et al. Humoral and cellular immune responses to myelin protein peptides in chronic inflammatory demyelinating polyradiculoneuropathy. J Neurol Neurosurg Psychiatry. 2009;80:333–338. PubMed
Ilyas AA, Mithen FA, Dalakas MC, Chen ZW, Cook SD. Antibodies to acidic glycolipids in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy. J Neurol Sci. 1992;107:111–121. PubMed
Kieseier BC, Mathey EK, Sommer C, Hartung HP. Immune-mediated neuropathies Nat Rev Dis Primers. 2018;4:31. PubMed
Querol L, Siles AM, Alba-Rovira R, et al. Antibodies against peripheral nerve antigens in chronic inflammatory demyelinating polyradiculoneuropathy. Sci Rep. 2017;7:14411. PubMed PMC
Moritz CP, Tholance Y, Stoevesandt O, Ferraud K, Camdessanché J-P, Antoine J-C. CIDP Antibodies target junction proteins and identify patient subgroups. An Autoantigenomic Approach. 2021;8:e944. PubMed PMC
van Doorn PA, Hadden RDM, Van den Bergh PYK. Elucidating autoimmune nodopathies and the CIDP spectrum. Brain. 2021;144:1043–1045. PubMed
Querol L, Nogales-Gadea G, Rojas-Garcia R, et al. Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy. Ann Neurol. 2013;73:370–380. PubMed
Cortese A, Lombardi R, Briani C, et al. Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: Clinical relevance of IgG isotype. Neurol Neuroimmunol Neuroinflamm. 2019;7:e639. PubMed PMC
Pascual-Goñi E, Fehmi J, Lleixà C, et al. Antibodies to the Caspr1/contactin-1 complex in chronic inflammatory demyelinating polyradiculoneuropathy. Brain. 2021;144:1183–1196. PubMed
Querol L, Nogales-Gadea G, Rojas-Garcia R, et al. Neurofascin IgG4 antibodies in CIDP associate with disabling tremor and poor response to IVIg. Neurology. 2014;82:879–886. PubMed PMC
Dalakas MC. IgG4-mediated neurologic autoimmunities: understanding the pathogenicity of IgG4, ineffectiveness of IVIg, and long-lasting benefits of anti-B Cell therapies. Neurol Neuroimmunol Neuroinflamm. 2021;9:e1116. PubMed PMC
Stengel H, Vural A, Brunder AM, et al. Anti-pan-neurofascin IgG3 as a marker of fulminant autoimmune neuropathy. Neurol Neuroimmunol Neuroinflamm. 2019;6:e603. PubMed PMC
Doppler K, Schuster Y, Appeltshauser L, et al. Anti-CNTN1 IgG3 induces acute conduction block and motor deficits in a passive transfer rat model. J Neuroinflammation. 2019;16:73. PubMed PMC
Fehmi J, Davies AJ, Walters J, et al. IgG1 pan-neurofascin antibodies identify a severe yet treatable neuropathy with a high mortality. J Neurol Neurosurg Psychiatry. 2021;92:1089–1095. PubMed PMC
Monfrini M, Donzelli E, Rodriguez-Menendez V, et al. Therapeutic potential of mesenchymal stem cells for the treatment of diabetic peripheral neuropathy. Exp Neurol. 2017;288:75–84. PubMed
Querol L, Lleixà C. Novel immunological and therapeutic insights in Guillain-Barré syndrome and CIDP. Neurotherapeutics. 2021;1–14. PubMed PMC
Liberatore G, De Lorenzo A, Giannotta C, et al. Frequency and clinical correlates of anti-nerve antibodies in a large population of CIDP patients included in the Italian database. Neurol Sci. 2022. ePub ahead of print. 10.1007/s10072-021-05811-0. PubMed
Koike H, Ikeda S, Fukami Y, et al. Complement deposition and macrophage-induced demyelination in CIDP with anti-LM1 antibodies. J Neurol Sci. 2020;408:116509. PubMed
Yan WX, Taylor J, Andrias-Kauba S, Pollard JD. Passive transfer of demyelination by serum or IgG from chronic inflammatory demyelinating polyneuropathy patients. Ann Neurol. 2000;47:765–775. PubMed
Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol. 2020;16:601–617. PubMed PMC
Sarma JV, Ward PA. The complement system. Cell Tissue Res. 2011;343(1):227–235. PubMed PMC
Hafer-Macko CE, Sheikh KA, Li CY, et al. Immune attack on the Schwann cell surface in acute inflammatory demyelinating polyneuropathy. Ann Neurol. 1996;39:625–635. PubMed
Stoll G, Schmidt B, Jander S, Toyka KV, Hartung HP. Presence of the terminal complement complex (C5b–9) precedes myelin degradation in immune-mediated demyelination of the rat peripheral nervous system. Ann Neurol. 1991;30:147–155. PubMed
Feasby T, Gilbert J, Hahn A, Neilson M. Complement depletion suppresses Lewis rat experimental allergic neuritis. Brain Res. 1987;419:97–103. PubMed
Vriesendorp FJ, Flynn RE, Pappolla MA, Koski CL. Complement depletion affects demyelination and inflammation in experimental allergic neuritis. J Neuroimmunol. 1995;58(2):157–165. PubMed
Susuki K, Rasband MN, Tohyama K, et al. Anti-GM1 antibodies cause complement-mediated disruption of sodium channel clusters in peripheral motor nerve fibers. J Neurosci. 2007;27:3956–3967. PubMed PMC
Morgan BP, Harris C. Complement, a target for therapy in inflammatory and degenerative diseases. Nat Rev Drug Discov. 2015;14:857–877. PubMed PMC
Howard JF, Jr, Utsugisawa K, Benatar M, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017;16:976–986. PubMed
Muppidi S, Utsugisawa K, Benatar M, et al. Long-term safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle Nerve. 2019;60:14–24. PubMed PMC
Prineas JW, McLeod JG. Chronic relapsing polyneuritis. J Neurol Sci. 1976;27(4):427–458. PubMed
Vriesendorp FJ, Flynn RE, Malone MR, Pappolla MA. Systemic complement depletion reduces inflammation and demyelination in adoptive transfer experimental allergic neuritis. Acta Neuropathol. 1998;95:297–301. PubMed
Jung S, Toyka KV, Hartung HP. Soluble complement receptor type 1 inhibits experimental autoimmune neuritis in Lewis rats. Neurosci Lett. 1995;200:167–170. PubMed
Yan WX, Archelos JJ, Hartung HP, Pollard JD. P0 protein is a target antigen in chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol. 2001;50:286–292. PubMed
McGonigal R, Cunningham ME, Yao D, et al. C1q-targeted inhibition of the classical complement pathway prevents injury in a novel mouse model of acute motor axonal neuropathy. Acta Neuropathol Commun. 2016;4:23. PubMed PMC
Rumsey J, Lorance C, Jackson M, et al. CIDP patient serum triggers complement activation and functional deficits in motoneurons blocked by anti-C1s therapeutic. J Peripheral Nervous System. 2021;26:3.
Duchateau L, Martin-Aguilar L, Lleixa C, et al. Absence of pathogenic mutations in CD59 in chronic inflammatory demyelinating polyradiculoneuropathy. PLoS One. 2019;14:e0212647. PubMed PMC
Nevo Y, Ben-Zeev B, Tabib A, et al. CD59 deficiency is associated with chronic hemolysis and childhood relapsing immune-mediated polyneuropathy. Blood. 2013;121:129–135. PubMed
Mevorach D, Reiner I, Grau A, et al. Therapy with eculizumab for patients with CD59 p.Cys89Tyr mutation. Ann Neurol. 2016;80:708–717. PubMed
Hays AP, Lee S, Latov N. Immune reactive C3d on the surface of myelin sheaths in neuropathy. J Neuroimmunol. 1980;18:231–244. PubMed
Dalakas MC, Houff SA, Engel WK, Madden DL, Sever JL. CSF “monoclonal” bands in chronic relapsing polyneuropathy. Neurology. 1980;30:864–867. PubMed
Ruiz M, Puthenparampil M, Campagnolo M, et al. Oligoclonal IgG bands in chronic inflammatory polyradiculoneuropathies. J Neurol Neurosurg Psychiatry. 2021;92(9):969–974. PubMed
Hafer-Macko C, Hsieh ST, Li CY, et al. Acute motor axonal neuropathy: an antibody-mediated attack on axolemma. Ann Neurol. 1996;40:635–644. PubMed
Koski CL, Sanders ME, Swoveland PT, et al. Activation of terminal components of complement in patients with Guillain-Barre syndrome and other demyelinating neuropathies. J Clin Invest. 1987;80:1492–1497. PubMed PMC
Koike H, Fukami Y, Nishi R, et al. Ultrastructural mechanisms of macrophage-induced demyelination in Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry. 2020;91:650–659. PubMed
Hartung HP, Schwenke C, Bitter-Seurmann D, Toyka K. Guillain-Barré syndrome and CIDP. Immunology of Neuromuscular Disease. 1987;33–104.
Misawa S, Kuwabara S, Sato Y, et al. Safety and efficacy of eculizumab in Guillain-Barré syndrome: a multicentre, double-blind, randomised phase 2 trial. Lancet Neurol. 2018;17:519–529. PubMed
Davidson AI, Halstead SK, Goodfellow JA, et al. Inhibition of complement in Guillain-Barré syndrome: the ICA-GBS study. J Peripher Nerv Syst. 2017;22:4–12. PubMed
Mastellos DC, Ricklin D, Lambris JD. Clinical promise of next-generation complement therapeutics. Nat Rev Drug Discov. 2019;18:707–729. PubMed PMC