New insights into the genetic etiology of Alzheimer's disease and related dementias
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., Research Support, N.I.H., Extramural
Grantová podpora
N01HC55222
NHLBI NIH HHS - United States
P30 AG013854
NIA NIH HHS - United States
P30 AG053760
NIA NIH HHS - United States
P30 AG066444
NIA NIH HHS - United States
K08 AG065463
NIA NIH HHS - United States
MR/R024804/1
Medical Research Council - United Kingdom
UL1 TR001445
NCATS NIH HHS - United States
N01HC85080
NHLBI NIH HHS - United States
G0801418/1
Medical Research Council - United Kingdom
MC_PC_17112
Medical Research Council - United Kingdom
R01 AG022374
NIA NIH HHS - United States
P50 AG023501
NIA NIH HHS - United States
R01 HL103612
NHLBI NIH HHS - United States
R56 AG057191
NIA NIH HHS - United States
U01 AG046152
NIA NIH HHS - United States
P30 AG010124
NIA NIH HHS - United States
U01 HG006375
NHGRI NIH HHS - United States
U01 AG058654
NIA NIH HHS - United States
R01 NS017950
NINDS NIH HHS - United States
RC2 AG036528
NIA NIH HHS - United States
MR/L023784/1
Medical Research Council - United Kingdom
R01 AG054005
NIA NIH HHS - United States
P30 AG028377
NIA NIH HHS - United States
Wellcome Trust - United Kingdom
G0902227
Medical Research Council - United Kingdom
R01 AG054076
NIA NIH HHS - United States
P50 AG005142
NIA NIH HHS - United States
RF1 AG059421
NIA NIH HHS - United States
R01 AG035137
NIA NIH HHS - United States
R01 AG062622
NIA NIH HHS - United States
R01 AG009029
NIA NIH HHS - United States
HHSN268201800001C
NHLBI NIH HHS - United States
P50 AG005131
NIA NIH HHS - United States
P30 AG010133
NIA NIH HHS - United States
U24 AG021886
NIA NIH HHS - United States
R01 AG031581
NIA NIH HHS - United States
R01 AG009956
NIA NIH HHS - United States
U01 HL080295
NHLBI NIH HHS - United States
P50 AG016574
NIA NIH HHS - United States
P30 AG066511
NIA NIH HHS - United States
P50 AG005146
NIA NIH HHS - United States
U24 AG072122
NIA NIH HHS - United States
T32 EY007157
NEI NIH HHS - United States
HHSN268201200036C
NHLBI NIH HHS - United States
P01 AG017586
NIA NIH HHS - United States
P30 AG066512
NIA NIH HHS - United States
U01 AG061356
NIA NIH HHS - United States
K99 AG066849
NIA NIH HHS - United States
RC2 AG036650
NIA NIH HHS - United States
R01 AG019085
NIA NIH HHS - United States
U01 HL130114
NHLBI NIH HHS - United States
R56 AG055824
NIA NIH HHS - United States
U01 AG032984
NIA NIH HHS - United States
R01 AG013616
NIA NIH HHS - United States
R01 AG030146
NIA NIH HHS - United States
U01 AG024904
NIA NIH HHS - United States
P20 MD000546
NIMHD NIH HHS - United States
75N92021D00006
NHLBI NIH HHS - United States
P50 AG008702
NIA NIH HHS - United States
MR/L010305/1
Medical Research Council - United Kingdom
R01 AG017173
NIA NIH HHS - United States
UL1 RR029893
NCRR NIH HHS - United States
Howard Hughes Medical Institute - United States
Department of Health - United Kingdom
U01 AG016976
NIA NIH HHS - United States
P50 NS039764
NINDS NIH HHS - United States
P01 AG003991
NIA NIH HHS - United States
P30 AG008051
NIA NIH HHS - United States
P50 AG005681
NIA NIH HHS - United States
P30 AG013846
NIA NIH HHS - United States
U24 AG056270
NIA NIH HHS - United States
RC2 AG036502
NIA NIH HHS - United States
P01 AG026276
NIA NIH HHS - United States
R01 AG017917
NIA NIH HHS - United States
P30 AG072980
NIA NIH HHS - United States
R01 HL087652
NHLBI NIH HHS - United States
MR/L501517/1
Medical Research Council - United Kingdom
G0601022
Medical Research Council - United Kingdom
N01HC85082
NHLBI NIH HHS - United States
MR/K013041/1
Medical Research Council - United Kingdom
R01 AG028786
NIA NIH HHS - United States
KL2 RR024151
NCRR NIH HHS - United States
R01 AG049607
NIA NIH HHS - United States
P50 AG005136
NIA NIH HHS - United States
P30 AG012300
NIA NIH HHS - United States
MR/T04604X/1
Medical Research Council - United Kingdom
R21 AG063130
NIA NIH HHS - United States
RF1 AG059319
NIA NIH HHS - United States
R01 HL105756
NHLBI NIH HHS - United States
P30 AG062422
NIA NIH HHS - United States
R01 AG037985
NIA NIH HHS - United States
U19 AG024904
NIA NIH HHS - United States
HHSN268201500001I
NHLBI NIH HHS - United States
F99 AG073565
NIA NIH HHS - United States
R01 AG012101
NIA NIH HHS - United States
R01 AG023651
NIA NIH HHS - United States
U01 DK066134
NIDDK NIH HHS - United States
P50 AG016573
NIA NIH HHS - United States
P30 DK063491
NIDDK NIH HHS - United States
P50 AG016570
NIA NIH HHS - United States
P50 AG005134
NIA NIH HHS - United States
P30 AG066462
NIA NIH HHS - United States
N01HC85083
NHLBI NIH HHS - United States
P30 AG008017
NIA NIH HHS - United States
R01 AG042437
NIA NIH HHS - United States
U24 AG041689
NIA NIH HHS - United States
P01 AG019724
NIA NIH HHS - United States
MR/L501529/1
Medical Research Council - United Kingdom
N01HC85079
NHLBI NIH HHS - United States
P30 AG010161
NIA NIH HHS - United States
MR/N029402/1
Medical Research Council - United Kingdom
P30 AG066530
NIA NIH HHS - United States
R01 AG033193
NIA NIH HHS - United States
P30 ES030285
NIEHS NIH HHS - United States
R01 AG036042
NIA NIH HHS - United States
U01 AG058589
NIA NIH HHS - United States
R01 AG032990
NIA NIH HHS - United States
U24 AG026395
NIA NIH HHS - United States
N01HC85086
NHLBI NIH HHS - United States
P50 AG025688
NIA NIH HHS - United States
R37 AG015473
NIA NIH HHS - United States
P01 AG066597
NIA NIH HHS - United States
G0300429
Medical Research Council - United Kingdom
R01 NS080820
NINDS NIH HHS - United States
P50 AG005133
NIA NIH HHS - United States
P30 AG066509
NIA NIH HHS - United States
N01HC25195
NHLBI NIH HHS - United States
RC2 AG036547
NIA NIH HHS - United States
P01 AG002219
NIA NIH HHS - United States
U01 AG006781
NIA NIH HHS - United States
R01 AG041797
NIA NIH HHS - United States
P50 AG005144
NIA NIH HHS - United States
P01 AG010491
NIA NIH HHS - United States
P30 AG066546
NIA NIH HHS - United States
R01 AG033040
NIA NIH HHS - United States
P50 AG005138
NIA NIH HHS - United States
UKDRI-2002
Medical Research Council - United Kingdom
R01 AG048927
NIA NIH HHS - United States
RF1 AG057473
NIA NIH HHS - United States
R01 AG037212
NIA NIH HHS - United States
ALCHALABI-DOBSON/APR14/829-791
Motor Neurone Disease Association - United Kingdom
U01 AG052409
NIA NIH HHS - United States
U01 AG068880
NIA NIH HHS - United States
R01 AG021547
NIA NIH HHS - United States
R01 AG041232
NIA NIH HHS - United States
R01 AG019757
NIA NIH HHS - United States
R01 AG020688
NIA NIH HHS - United States
R01 AG022018
NIA NIH HHS - United States
U01 AG046139
NIA NIH HHS - United States
P30 AG072977
NIA NIH HHS - United States
R01 AG020098
NIA NIH HHS - United States
U19 AG062418
NIA NIH HHS - United States
R01 NS118146
NINDS NIH HHS - United States
G9901400
Medical Research Council - United Kingdom
U24 NS072026
NINDS NIH HHS - United States
R01 AG030653
NIA NIH HHS - United States
R01 AG027944
NIA NIH HHS - United States
UH2 NS100605
NINDS NIH HHS - United States
RF1 AG061872
NIA NIH HHS - United States
R01 AG025259
NIA NIH HHS - United States
P01 AG003949
NIA NIH HHS - United States
RF1 AG057519
NIA NIH HHS - United States
P30 AG062715
NIA NIH HHS - United States
U01 HG004610
NHGRI NIH HHS - United States
P30 AG072976
NIA NIH HHS - United States
P30 AG010129
NIA NIH HHS - United States
U01 AG046161
NIA NIH HHS - United States
R01 AG011101
NIA NIH HHS - United States
P50 AG016582
NIA NIH HHS - United States
R01 AG048015
NIA NIH HHS - United States
R01 AG041718
NIA NIH HHS - United States
P50 AG025711
NIA NIH HHS - United States
HHSN268200800007C
NHLBI NIH HHS - United States
P30 AG019610
NIA NIH HHS - United States
RF1 AG061351
NIA NIH HHS - United States
MR/L023784/2
Medical Research Council - United Kingdom
G0701075
Medical Research Council - United Kingdom
P30 AG072972
NIA NIH HHS - United States
N01HC85081
NHLBI NIH HHS - United States
R01 AG023629
NIA NIH HHS - United States
P30 AG066514
NIA NIH HHS - United States
G0901254
Medical Research Council - United Kingdom
P30 AG028383
NIA NIH HHS - United States
P01 AG017216
NIA NIH HHS - United States
P50 AG033514
NIA NIH HHS - United States
R01 NS059873
NINDS NIH HHS - United States
R01 AG018023
NIA NIH HHS - United States
U01 AG006786
NIA NIH HHS - United States
U19 AG068753
NIA NIH HHS - United States
R01 AG036836
NIA NIH HHS - United States
P30 AG072979
NIA NIH HHS - United States
R01 AG015819
NIA NIH HHS - United States
R01 AG026916
NIA NIH HHS - United States
U01 AG049505
NIA NIH HHS - United States
PubMed
35379992
PubMed Central
PMC9005347
DOI
10.1038/s41588-022-01024-z
PII: 10.1038/s41588-022-01024-z
Knihovny.cz E-zdroje
- MeSH
- Alzheimerova nemoc * genetika patologie MeSH
- celogenomová asociační studie MeSH
- kognitivní dysfunkce * psychologie MeSH
- lidé MeSH
- proteiny tau genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- proteiny tau MeSH
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
1st Department of Neurology Medical School Aristotle University of Thessaloniki Thessaloniki Greece
AI Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
Alzheimer Hellas Thessaloniki Greece
Alzheimer Research Center and Memory Clinic Andalusian Institute for Neuroscience Málaga Spain
Athens Association of Alzheimer's Disease and Related Disorders Athens Greece
Azienda Ospedaliero Universitaria Careggi Florence Italy
Bioinformatics College of Life Sciences Brigham Young University Provo UT USA
Biosciences School of Science and Technology Nottingham Trent University Nottingham UK
Biostatistics University of Kentucky College of Public Health Lexington KY USA
Bordeaux Population Health Research Center University Bordeaux INSERM Bordeaux France
Boston University and the NHLBI's Framingham Heart Study Boston MA USA
Brain Institute Federal University of Rio Grande do Norte Natal Brazil
CAEBI Centro Andaluz de Estudios Bioinformáticos Sevilla Spain
Cardiff School of Medicine Cardiff University Cardiff UK
Cardiovascular Health Research Unit Department of Medicine University of Washington Seattle WA USA
CEA Centre National de Recherche en Génomique Humaine Université Paris Saclay Evry France
Center for Neurosciences Vrije Universiteit Brussel Brussels Belgium
Centre of Age Related Medicine Stavanger University Hospital Stavanger Norway
Centro de Biología Molecular Severo Ochoa Madrid Spain
Centro de Neuropsiquiatría y Neurología de la Conducta C A B A Buenos Aires Argentina
CHUV Old Age Psychiatry Department of Psychiatry Lausanne Switzerland
CIEN Foundation Queen Sofia Foundation Alzheimer Center Madrid Spain
Cleveland Institute for Computational Biology Case Western Reserve University Cleveland OH USA
Clinic of Neurology UH 'Alexandrovska' Medical University Sofia Sofia Bulgaria
Clinical and Experimental Science Faculty of Medicine University of Southampton Southampton UK
Complex Genetics of Alzheimer's Disease Group VIB Center for Molecular Neurology VIB Antwerp Belgium
Delft Bioinformatics Lab Delft University of Technology Delft the Netherlands
Dementia Research Centre UCL Queen Square Institute of Neurology London UK
Departamento Ciencias Fisiológicas UAII Facultad de Medicina UBA C A B A Buenos Aires Argentina
Department of Biology Brigham Young University Provo UT USA
Department of Biomedical Sciences University of Antwerp Antwerp Belgium
Department of Biomedical Sciences University of Cagliari Cagliari Italy
Department of Biostatistics Boston University School of Public Health Boston MA USA
Department of Clinical Biochemistry Herlev and Gentofte Hospital Herlev Denmark
Department of Clinical Biochemistry Rigshospitalet Copenhagen Denmark
Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
Department of Clinical Sciences and Community Health University of Milan Milan Italy
Department of Epidemiology Erasmus MC Rotterdam the Netherlands
Department of Epidemiology University of Washington Seattle WA USA
Department of Genetics and CNR MAJ Normandie University UNIROUEN INSERM U1245 CHU Rouen Rouen France
Department of Geriatric Medicine Oslo University Hospital Oslo Norway
Department of Geriatric Psychiatry University Hospital of Psychiatry Zürich Zürich Switzerland
Department of Geriatrics St Olav's Hospital Trondheim University Hospital Trondheim Norway
Department of Health Service University of Washington Seattle WA USA
Department of Internal Medicine and Biostatistics Erasmus MC Rotterdam the Netherlands
Department of Laboratory Diagnostics 3 Laboratory of Analysis Brescia Hospital Brescia Italy
Department of Medical and Molecular Genetics Indiana University Indianapolis IN USA
Department of Medicine Boston University School of Medicine Boston MA USA
Department of Medicine University of Washington Seattle WA USA
Department of Neurology Boston University School of Medicine Boston MA USA
Department of Neurology Columbia University New York NY USA
Department of Neurology Erasmus MC Rotterdam the Netherlands
Department of Neurology ErasmusMC Rotterdam the Netherlands
Department of Neurology Kuopio University Hospital Kuopio Finland
Department of Neurology Medical School University of Cyprus Nicosia Cyprus
Department of Neurology UMC Utrecht Brain Center Utrecht the Netherlands
Department of Neurology University Medical Center Groningen Groningen the Netherlands
Department of Neurology University of Bonn Bonn Germany
Department of Neurology UZ Brussel Brussels Belgium
Department of Neuroscience Rita Levi Montalcini University of Torino Torino Italy
Department of Nutrition and Diatetics Harokopio University Athens Greece
Department of Pathology and Laboratory Medicine University of Pennsylvania Philadelphia PA USA
Department of Primary Medical Care University Medical Centre Hamburg Eppendorf Hamburg Germany
Department of Psychiatry and Psychotherapy Medical University of Vienna Vienna Austria
Department of Psychiatry and Psychotherapy University Medical Center Goettingen Goettingen Germany
Department of Psychiatry Harvard Medical School McLean Hospital Belmont MA USA
Department of Psychiatry Icahn School of Medicine at Mount Sinai New York NY USA
Department of Psychiatry Namsos Hospital Namsos Norway
Department of Psychiatry Social Medicine Center East Donauspital Vienna Austria
Department of Public Health and Carins Sciences Geriatrics Uppsala University Uppsala Sweden
Department of Research and Innovation Helse Fonna Haugesund Hospital Haugesund Norway
Departments of Neurology and Epidemiology University of Washington Seattle WA USA
DIMEC University of Parma Parma Italy
Division of Genetic Medicine Vanderbilt University Nashville TN USA
Dr John T Macdonald Foundation Department of Human Genetics University of Miami Miami FL USA
EA 4468 Université de Paris APHP Hôpital Broca Paris France
Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
Faculty of Medicine University of Lisbon Lisbon Portugal
Fondazione IRCCS Ca'Granda Ospedale Policlinico Milan Italy
Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
Framingham Heart Study Framingham MA USA
Geriatic Unit Fondazione Cà Granda IRCCS Ospedale Maggiore Policlinico Milan Italy
Geriatrics Unit Fondazione Policlinico A Gemelli IRCCS Rome Italy
German Center for Neurodegenerative Diseases Berlin Germany
German Center for Neurodegenerative Diseases Bonn Germany
German Center for Neurodegenerative Diseases Goettingen Germany
German Center for Neurodegenerative Diseases Magdeburg Germany
German Center for Neurodegenerative Diseases Munich Germany
Gertrude H Sergievsky Center Columbia University New York NY USA
Hospital Interzonal General de Agudos Eva Perón San Martín Buenos Aires Argentina
Hospital Universitario la Paz Madrid Spain
Hospital Universitario Ramon y Cajal IRYCIS Madrid Spain
Human Genetics School of Life Sciences University of Nottingham Nottingham UK
Human Genome Sequencing Center Baylor College of Medicine Houston TX USA
Icelandic Heart Association Faculty of Medicine University of Iceland Reykjavik Iceland
Icelandic Heart Association Kopovagur Iceland
Institut de Biomedicina de València CSIC CIBERNED València Spain
Institut de Recerca Biomedica de Lleida Lleida Spain
Institute Born Bunge University of Antwerp Antwerp Belgium
Institute for Regenerative Medicine University of Zürich Schlieren Switzerland
Institute for Urban Public Health University Hospital of University Duisburg Essen Essen Germany
Institute of Biomedicine University of Eastern Finland Kuopio Finland
Institute of Clinical Medicine Internal Medicine University of Eastern Finland Kuopio Finland
Institute of Clinical Medicine Neurology University of Eastern Kuopio Finland
Institute of Clinical Medicine The University of Bergen Bergen Norway
Institute of Clinical Medicine University of Oslo Oslo Norway
Institute of Medical Biometry Informatics and Epidemiology University Hospital of Bonn Bonn Germany
Institute of Neurology Catholic University of the Sacred Heart Rome Italy
Institute of Psychiatry Psychology and Neuroscience London UK
Institute of Public Health and Clinical Nutrition University of Eastern Finland Kuopio Finland
Institute of Public Health University of Cambridge Cambridge UK
Instituto de Investigacion Sanitaria 'Hospital la Paz' Madrid Spain
International Clinical Research Center St Anne's University Hospital Brno Brno Czechia
IRCCS Fondazione Don Carlo Gnocchi Florence Italy
Laboratorio de Genética Hospital Universitario Central de Asturias Oviedo Spain
Laboratory for Cognitive Neurology Department of Neurosciences University of Leuven Leuven Belgium
Laboratory of Brain Aging and Neurodegeneration FIL CONICET Buenos Aires Argentina
Laboratory of Neurogenetics Institute Born Bunge Antwerp Belgium
MAC Memory Clinic IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia Italy
Medical Science Department iBiMED Aveiro Portugal
Medicine Biomedical Genetics Boston University School of Medicine Boston MA USA
Memory Disorders Unit Department of Neurology Hospital Universitari Mutua de Terrassa Terrassa Spain
MRC Prion Unit at UCL UCL Institute of Prion Diseases London UK
Munich Cluster for Systems Neurology Munich Germany
Neurodegenerative Brain Diseases Group VIB Center for Molecular Neurology VIB Antwerp Belgium
Neuroepidemiology and Ageing Research Unit School of Public Health Imperial College London London UK
Neurology Department Hospital Clínic IDIBAPS Universitat de Barcelona Barcelona Spain
Neurology Department University Hospitals Leuven Leuven Belgium
Neurology Service Marqués de Valdecilla University Hospital Santander Spain
Neurology Unit San Gerardo Hospital Monza Italy
Neuroscience Center Zurich University of Zurich and ETH Zurich Zurich Switzerland
Neurosciences Area Instituto Biodonostia San Sebastian Spain
NORMENT Centre University of Oslo Oslo Norway
Nuffield Department of Population Health Oxford University Oxford UK
Old Age Psychiatry Department of Psychiatry Lausanne University Hospital Lausanne Switzerland
Pole Santé Publique CHU de Bordeaux Bordeaux France
Public Health Promotion Unit Finnish Institute for Health and Welfare Helsinki Finland
Research and Development UnitStockholms Sjukhem Stockholm Sweden
Ronald M Loeb Center for Alzheimer's Disease Icahn School of Medicine at Mount Sinai New York NY USA
Sanders Brown Center on Aging Department of Biostatistics University of Kentucky Lexington KY USA
School of Health Sciences Bangor University Bangor UK
School of Medicine and Surgery University of Milano Bicocca Milano Italy
School of Medicine University of Thessaly Larissa Greece
School of Public Health University of Texas Health Science Center at Houston Houston TX USA
Servei de Neurologia Hospital Universitari i Politècnic La Fe Valencia Spain
Stockholm Gerontology Research Center Stockholm Sweden
Taub Institute Columbia University New York NY USA
The John P Hussman Institute for Human Genomics University of Miami Miami FL USA
Translational Health Sciences Bristol Medical School University of Bristol Bristol UK
UFIEC Instituto de Salud Carlos 3 Madrid Spain
Unidad de Demencias Hospital Clínico Universitario Virgen de la Arrixaca Murcia Spain
Unit for Hereditary Dementias Karolinska University Hospital Solna Stockholm Sweden
Unit of Clinical Pharmacology University Hospital of Cagliari Cagliari Italy
Unit of Neurology University of Parma and AOU Parma Italy
Unitat Mixta de de Neurología y Genética Institut d'Investigació Sanitària La Fe València Spain
Unitat Trastorns Cognitius Hospital Universitari Santa Maria de Lleida Lleida Spain
University of Bari A Moro Bary Italy
University of Milan Milan Italy
Vanderbilt Brain Institute Vanderbilt University Nashville TN USA
Wales Centre for Ageing and Dementia Research Swansea University Wales New Zealand
Zurich Center for Integrative Human Physiology University of Zurich Zurich Switzerland
Zobrazit více v PubMed
Gatz M, et al. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry. 2006;63:168–174. doi: 10.1001/archpsyc.63.2.168. PubMed DOI
Bellenguez C, Grenier-Boley B, Lambert JC. Genetics of Alzheimer’s disease: where we are, and where we are going. Curr. Opin. Neurobiol. 2020;61:40–48. doi: 10.1016/j.conb.2019.11.024. PubMed DOI
Jansen IE, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019;51:404–413. doi: 10.1038/s41588-018-0311-9. PubMed DOI PMC
Chang CC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. doi: 10.1186/s13742-015-0047-8. PubMed DOI PMC
Kunkle BW, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019;51:414–430. doi: 10.1038/s41588-019-0358-2. PubMed DOI PMC
Lambert JC, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013;45:1452–1458. doi: 10.1038/ng.2802. PubMed DOI PMC
Liu JZ, Erlich Y, Pickrell JK. Case-control association mapping by proxy using family history of disease. Nat. Genet. 2017;49:325–331. doi: 10.1038/ng.3766. PubMed DOI
Marioni RE, et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry. 2018;8:99. doi: 10.1038/s41398-018-0150-6. PubMed DOI PMC
Sims R, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 2017;49:1373–1384. doi: 10.1038/ng.3916. PubMed DOI PMC
Jun G, et al. A novel Alzheimer disease locus located near the gene encoding tau protein. Mol. Psychiatry. 2016;21:108–117. doi: 10.1038/mp.2015.23. PubMed DOI PMC
Schwartzentruber J, et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 2021;53:392–402. doi: 10.1038/s41588-020-00776-w. PubMed DOI PMC
de Rojas I, et al. Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. Nat. Commun. 2021;12:3417. doi: 10.1038/s41467-021-22491-8. PubMed DOI PMC
Wightman DP, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 2021;53:1276–1282. doi: 10.1038/s41588-021-00921-z. PubMed DOI PMC
Skene NG, et al. Genetic identification of brain cell types underlying schizophrenia. Nat. Genet. 2018;50:825–833. doi: 10.1038/s41588-018-0129-5. PubMed DOI PMC
de Leeuw CA, Stringer S, Dekkers IA, Heskes T, Posthuma D. Conditional and interaction gene-set analysis reveals novel functional pathways for blood pressure. Nat. Commun. 2018;9:3768. doi: 10.1038/s41467-018-06022-6. PubMed DOI PMC
Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb. Perspect. Med. 2012;2:a006270. doi: 10.1101/cshperspect.a006270. PubMed DOI PMC
Chapuis J, et al. Genome-wide, high-content siRNA screening identifies the Alzheimer’s genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathol. 2017;133:955–966. doi: 10.1007/s00401-016-1652-z. PubMed DOI PMC
Cleynen A, et al. Expressed fusion gene landscape and its impact in multiple myeloma. Nat. Commun. 2017;8:1893. doi: 10.1038/s41467-017-00638-w. PubMed DOI PMC
Szklarczyk D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D613. doi: 10.1093/nar/gky1131. PubMed DOI PMC
Spit M, Rieser E, Walczak H. Linear ubiquitination at a glance. J. Cell Sci. 2019;132:jcs208512. doi: 10.1242/jcs.208512. PubMed DOI
Pencina MJ, D’Agostino RB, Pencina KM, Janssens ACJW, Greenland P. Interpreting incremental value of markers added to risk prediction models. Am. J. Epidemiol. 2012;176:473–481. doi: 10.1093/aje/kws207. PubMed DOI PMC
Dourlen P, Chapuis J, Lambert J-C. Using high-throughput animal or cell-based models to functionally characterize GWAS signals. Curr. Genet. Med. Rep. 2018;6:107–115. doi: 10.1007/s40142-018-0141-1. PubMed DOI PMC
Dourlen P, Kilinc D, Malmanche N, Chapuis J, Lambert JC. The new genetic landscape of Alzheimer’s disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol. 2019;138:221–236. doi: 10.1007/s00401-019-02004-0. PubMed DOI PMC
Deuss M, Reiss K, Hartmann D. Part-time α-secretases: the functional biology of ADAM 9, 10 and 17. Curr. Alzheimer Res. 2008;5:187–201. doi: 10.2174/156720508783954686. PubMed DOI
Kim T, et al. Human LilrB2 is a β-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science. 2013;341:1399–1404. doi: 10.1126/science.1242077. PubMed DOI PMC
Salminen A, Kaarniranta K. Siglec receptors and hiding plaques in Alzheimer’s disease. J. Mol. Med. 2009;87:697–701. doi: 10.1007/s00109-009-0472-1. PubMed DOI
Rodgers MA, et al. The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J. Exp. Med. 2014;211:1333–1347. doi: 10.1084/jem.20132486. PubMed DOI PMC
Iwai K. LUBAC-mediated linear ubiquitination: a crucial regulator of immune signaling. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2021;97:120–133. doi: 10.2183/pjab.97.007. PubMed DOI PMC
Venegas C, et al. Microglia-derived ASC specks crossseed amyloid-β in Alzheimer’s disease. Nature. 2017;552:355–361. doi: 10.1038/nature25158. PubMed DOI
Ising C, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575:669–673. doi: 10.1038/s41586-019-1769-z. PubMed DOI PMC
Nakayama Y, et al. Linear polyubiquitin chain modification of TDP-43-positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 2020;79:256–265. doi: 10.1093/jnen/nlz135. PubMed DOI
Black RA, et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-∅ from cells. Nature. 1997;385:729–733. doi: 10.1038/385729a0. PubMed DOI
Verstrepen L, Carpentier I, Verhelst K, Beyaert R. ABINs: A20 binding inhibitors of NF-κB and apoptosis signaling. Biochem. Pharmacol. 2009;78:105–114. doi: 10.1016/j.bcp.2009.02.009. PubMed DOI
Spitz C, et al. Non-canonical Shedding of TNFα by SPPL2a is determined by the conformational flexibility of its transmembrane helix. iScience. 2020;23:101775. doi: 10.1016/j.isci.2020.101775. PubMed DOI PMC
Tang W, et al. The growth factor progranulin binds to tnf receptors and is therapeutic against inflammatory arthritis in mice. Science. 2011;332:478–484. doi: 10.1126/science.1199214. PubMed DOI PMC
He P, et al. Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer’s mice. J. Cell Biol. 2007;178:829–841. doi: 10.1083/jcb.200705042. PubMed DOI PMC
Shi JQ, et al. Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Res. 2011;1368:239–247. doi: 10.1016/j.brainres.2010.10.053. PubMed DOI
Bezbradica JS, Coll RC, Schroder K. Sterile signals generate weaker and delayed macrophage NLRP3 inflammasome responses relative to microbial signals. Cell. Mol. Immunol. 2017;14:118–126. doi: 10.1038/cmi.2016.11. PubMed DOI PMC
Decourt B, Lahiri DK, Sabbagh MN. Targeting tumor necrosis factor alpha for Alzheimer’s disease. Curr. Alzheimer Res. 2016;14:412–425. doi: 10.2174/1567205013666160930110551. PubMed DOI PMC
De Strooper B, Karran E. The cellular phase of Alzheimer’s disease. Cell. 2016;164:603–615. doi: 10.1016/j.cell.2015.12.056. PubMed DOI
Gong K, et al. TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer. J. Clin. Invest. 2018;128:2500–2518. doi: 10.1172/JCI96148. PubMed DOI PMC
Rhinn H, Abeliovich A. Differential aging analysis in human cerebral cortex identifies variants in TMEM106B and GRN that regulate aging phenotypes. Cell Syst. 2017;4:404–415. doi: 10.1016/j.cels.2017.02.009. PubMed DOI
Vass R, et al. Risk genotypes at TMEM106B are associated with cognitive impairment in amyotrophic lateral sclerosis. Acta Neuropathol. 2011;121:373–380. doi: 10.1007/s00401-010-0782-y. PubMed DOI PMC
Baizabal-Carvallo JF, Jankovic J. Parkinsonism, movement disorders and genetics in frontotemporal dementia. Nat. Rev. Neurol. 2016;12:175–185. doi: 10.1038/nrneurol.2016.14. PubMed DOI
Tropea TF, et al. TMEM106B Effect on cognition in Parkinson disease and frontotemporal dementia. Ann. Neurol. 2019;85:801–811. doi: 10.1002/ana.25486. PubMed DOI PMC
Mendsaikhan A, Tooyama I, Walker DG. Microglial progranulin: involvement in Alzheimer’s disease and neurodegenerative diseases. Cells. 2019;8:230. doi: 10.3390/cells8030230. PubMed DOI PMC
Li Z, et al. The TMEM106B FTLD-protective variant, rs1990621, is also associated with increased neuronal proportion. Acta Neuropathol. 2020;139:45–61. doi: 10.1007/s00401-019-02066-0. PubMed DOI PMC
Yang HS, et al. Genetics of gene expression in the aging human brain reveal TDP-43 proteinopathy pathophysiology. Neuron. 2020;107:496–508.e6. doi: 10.1016/j.neuron.2020.05.010. PubMed DOI PMC
Paushter DH, Du H, Feng T, Hu F. The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol. 2018;136:1–17. doi: 10.1007/s00401-018-1861-8. PubMed DOI PMC
Feng T, Lacrampe A, Hu F. Physiological and pathological functions of TMEM106B: a gene associated with brain aging and multiple brain disorders. Acta Neuropathol. 2021;141:327–339. doi: 10.1007/s00401-020-02246-3. PubMed DOI PMC
Lacour A, et al. Genome-wide significant risk factors for Alzheimer’s disease: role in progression to dementia due to Alzheimer’s disease among subjects with mild cognitive impairment. Mol. Psychiatry. 2017;22:153–160. doi: 10.1038/mp.2016.18. PubMed DOI PMC
Zhang Q, et al. Risk prediction of late-onset Alzheimer’s disease implies an oligogenic architecture. Nat. Commun. 2020;11:1–11. doi: 10.1038/s41467-019-13993-7. PubMed DOI PMC
Holstege H, et al. Exome sequencing identifies novel AD-associated genes. medRxiv. 2020;18:24.
Psaty BM, et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circulation: Cardiovasc. Genet. 2009;2:73–80. PubMed PMC
Naj AC, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat. Genet. 2011;43:436–441. doi: 10.1038/ng.801. PubMed DOI PMC
Jun G, et al. Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch. Neurol. 2010;67:1473–1484. doi: 10.1001/archneurol.2010.201. PubMed DOI PMC
Taliun D, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021;590:290–299. doi: 10.1038/s41586-021-03205-y. PubMed DOI PMC
Das S, et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016;48:1284–1287. doi: 10.1038/ng.3656. PubMed DOI PMC
McCarthy S, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 2016;48:1279–1283. doi: 10.1038/ng.3643. PubMed DOI PMC
Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 2007;39:906–913. doi: 10.1038/ng2088. PubMed DOI
Zhou W, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 2018;50:1335–1341. doi: 10.1038/s41588-018-0184-y. PubMed DOI PMC
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191. doi: 10.1093/bioinformatics/btq340. PubMed DOI PMC
Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics. 2007;23:1294–1296. doi: 10.1093/bioinformatics/btm108. PubMed DOI
Bulik-Sullivan B, et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015;47:291–295. doi: 10.1038/ng.3211. PubMed DOI PMC
de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 2015;11:e1004219. doi: 10.1371/journal.pcbi.1004219. PubMed DOI PMC
Yurko R, Roeder K, Devlin B, G’Sell M. H‐MAGMA, inheriting a shaky statistical foundation, yields excess false positives. Ann. Hum. Genet. 2021;85:97–100. doi: 10.1111/ahg.12412. PubMed DOI
De Leeuw CA, Neale BM, Heskes T, Posthuma D. The statistical properties of gene-set analysis. Nat. Rev. Genet. 2016;17:353–364. doi: 10.1038/nrg.2016.29. PubMed DOI
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. U. S. A. 2003;100:9440–9445. doi: 10.1073/pnas.1530509100. PubMed DOI PMC
Coelho, D. M., L. I. da Cruz Carvalho, Melo-de-Farias, A. R., Lambert, J.-C. & Costa, M. R. Differential transcript usage unravels gene expression alterations in Alzheimer’s disease human brains. NPJ Aging Mech. Dis. 7, 2 (2021). PubMed PMC
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 2018;36:411–420. doi: 10.1038/nbt.4096. PubMed DOI PMC
Allen M, et al. Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases. Sci. Data. 2016;3:160089. doi: 10.1038/sdata.2016.89. PubMed DOI PMC
Mostafavi S, et al. A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease. Nat. Neurosci. 2018;21:811–819. doi: 10.1038/s41593-018-0154-9. PubMed DOI PMC
Bennett DA, et al. Religious orders study and rush memory and aging project. J. Alzheimer’s Dis. 2018;64:S161–S189. doi: 10.3233/JAD-179939. PubMed DOI PMC
Wang M, et al. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer’s disease. Sci. Data. 2018;5:180185. doi: 10.1038/sdata.2018.185. PubMed DOI PMC
GTEx Consortium The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–1330. doi: 10.1126/science.aaz1776. PubMed DOI PMC
De, K. et al. Atlas of genetic effects in human microglia transcriptome across brain regions, aging and disease pathologies. Preprint at bioRxiv10.1101/2020.10.27.356113 (2020).
Alasoo K, et al. Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response. Nat. Genet. 2018;50:424–431. doi: 10.1038/s41588-018-0046-7. PubMed DOI PMC
Nédélec Y, et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell. 2016;167:657–669.e21. doi: 10.1016/j.cell.2016.09.025. PubMed DOI
Chen L, et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell. 2016;167:1398–1414.e24. doi: 10.1016/j.cell.2016.10.026. PubMed DOI PMC
Momozawa Y, et al. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat. Commun. 2018;9:2427. doi: 10.1038/s41467-018-04365-8. PubMed DOI PMC
Fairfax BP, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Sci. (80-.). 2014;343:1246949. doi: 10.1126/science.1246949. PubMed DOI PMC
Quach H, et al. Genetic adaptation and neandertal admixture shaped the immune system of human populations. Cell. 2016;167:643–656.e17. doi: 10.1016/j.cell.2016.09.024. PubMed DOI PMC
Kerimov, N. et al. eQTL catalogue: a compendium of uniformly processed human gene expression and splicing QTLs. Preprint at bioRxiv10.1101/2020.01.29.924266 (2020).
Wingo AP, et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. 2021;53:143–146. doi: 10.1038/s41588-020-00773-z. PubMed DOI PMC
Ng B, et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat. Neurosci. 2017;20:1418–1426. doi: 10.1038/nn.4632. PubMed DOI PMC
Barbeira AN, et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome Biol. 2021;22:49. doi: 10.1186/s13059-020-02252-4. PubMed DOI PMC
Edgar RD, Jones MJ, Meaney MJ, Turecki G, Kobor MS. BECon: a tool for interpreting DNA methylation findings from blood in the context of brain. Transl. Psychiatry. 2017;7:e1187. doi: 10.1038/tp.2017.171. PubMed DOI PMC
Freytag V, et al. Genetic estimators of DNA methylation provide insights into the molecular basis of polygenic traits. Transl. Psychiatry. 2018;8:31. doi: 10.1038/s41398-017-0070-x. PubMed DOI PMC
Barbeira AN, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 2018;9:1825. doi: 10.1038/s41467-018-03621-1. PubMed DOI PMC
Chouraki V, et al. Evaluation of a genetic risk score to improve risk prediction for Alzheimer’s disease. J. Alzheimers Dis. 2016;53:921–932. doi: 10.3233/JAD-150749. PubMed DOI PMC
Steyerberg EW, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21:128–138. doi: 10.1097/EDE.0b013e3181c30fb2. PubMed DOI PMC
Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA. 1982;247:2543–2546. doi: 10.1001/jama.1982.03320430047030. PubMed DOI
Gerds TA, Kattan MW, Schumacher M, Yu C. Estimating a time-dependentconcordance index for survival prediction models with covariate dependent censoring. Stat. Med. 2013;32:2173–2184. doi: 10.1002/sim.5681. PubMed DOI
Pencina MJ, D’Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat. Med. 2011;30:11–21. doi: 10.1002/sim.4085. PubMed DOI PMC
Kattan MW, Gerds TA. The index of prediction accuracy: an intuitive measure useful for evaluating risk prediction models. Diagnostic Progn. Res. 2018;2:7. doi: 10.1186/s41512-018-0029-2. PubMed DOI PMC
Viechtbauer W. Conducting meta-analyses in R with the metafor. J. Stat. Softw. 2010;36:1–48. doi: 10.18637/jss.v036.i03. DOI
Ozenne B, Sørensen AL, Scheike T, Torp-Pedersen C, Gerds T. riskRegression: predicting the risk of an event using Cox regression models. R. J. 2017;9:440–460. doi: 10.32614/RJ-2017-062. DOI
X-chromosome-wide association study for Alzheimer's disease
Genetic Associations Between Modifiable Risk Factors and Alzheimer Disease