DarkCideS 1.0, a global database for bats in karsts and caves
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu dataset, časopisecké články
PubMed
35383183
PubMed Central
PMC8983664
DOI
10.1038/s41597-022-01234-4
PII: 10.1038/s41597-022-01234-4
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- Chiroptera * MeSH
- databáze faktografické MeSH
- ekosystém MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
Understanding biodiversity patterns as well as drivers of population declines, and range losses provides crucial baselines for monitoring and conservation. However, the information needed to evaluate such trends remains unstandardised and sparsely available for many taxonomic groups and habitats, including the cave-dwelling bats and cave ecosystems. We developed the DarkCideS 1.0 ( https://darkcides.org/ ), a global database of bat caves and species synthesised from publicly available information and datasets. The DarkCideS 1.0 is by far the largest database for cave-dwelling bats, which contains information for geographical location, ecological status, species traits, and parasites and hyperparasites for 679 bat species are known to occur in caves or use caves in part of their life histories. The database currently contains 6746 georeferenced occurrences for 402 cave-dwelling bat species from 2002 cave sites in 46 countries and 12 terrestrial biomes. The database has been developed to be collaborative and open-access, allowing continuous data-sharing among the community of bat researchers and conservation biologists to advance bat research and comparative monitoring and prioritisation for conservation.
Barbastella Echology Gentpoortstraat 50 9800 Deinze Belgium
Centro de Biodiversidad y Genética Universidad Mayor de San Simón Casilla 538 Cochabamba Bolivia
Conservation Science Group Department of Zoology University of Cambridge Cambridge UK
Department of Biology Southern Luzon State University Lucban Quezon Philippines
Department of Forestry and Wildlife Management Maasai Mara University Narok Kenya
Department of Zoology Federal University of Paraná Curitiba PR Brazil
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
FAUNA Research Alliance PO Box 5092 Kahibah NSW 2290 Australia
Grupo en Conservación y Manejo de Vida Silvestre Universidad Nacional de Colombia Bogotá Colombia
International College of the Chinese Academy of Sciences Beijing P R China
Museum of Natural History of the University of the Philippines Los Banos Laguna Philippines
National Centre for Biological Sciences Bangalore India
National Museum of Natural History Bulgarian Academy of Sciences Sofia Bulgaria
Operation Wallacea Ltd Wallace House Old Bolingbroke Lincolnshire PE23 4EX United Kingdom
Programa para la Conservación de los Murciélagos de Bolivia Cochabamba y Beni Beni Bolivia
Proyecto CUBABAT Calle América 6503 e Jáuregui y Santa Isabel 40100 Matanzas Cuba
Research Group Mycology Department of Biology Ghent University 9000 Ghent Belgium
School of Biological Sciences The University of Hong Kong Hong Kong SAR China
School of Zoology Faculty of Life sciences Tel Aviv University Tel Aviv Israel
Sede del Sur Universidad de Costa Rica 4000 Alamedas Golfito 60701 Costa Rica
Sociedad Espeleológica de Cuba Calle 9na 8402 e 84 y 84ª Playa La Habana Cuba
Zobrazit více v PubMed
Brooks TM, et al. Habitat Loss and Extinction in the Hotspots of Biodiversity. Conserv. Biol. 2002;16:909–923. doi: 10.1046/j.1523-1739.2002.00530.x. DOI
Vos JMD, Joppa LN, Gittleman JL, Stephens PR, Pimm SL. Estimating the normal background rate of species extinction. Conserv. Biol. 2015;29:452–462. doi: 10.1111/cobi.12380. PubMed DOI
Heberling, J. M., Miller, J. T., Noesgaard, D., Weingart, S. B. & Schigel, D. Data integration enables global biodiversity synthesis. Proc. Natl. Acad. Sci. 118 (2021). PubMed PMC
Ripple WJ, et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl. Acad. Sci. 2017;114:10678–10683. doi: 10.1073/pnas.1702078114. PubMed DOI PMC
Hughes AC, Orr MC, Yang Q, Qiao H. Effectively and accurately mapping global biodiversity patterns for different regions and taxa. Glob. Ecol. Biogeogr. 2021;30:1375–1388. doi: 10.1111/geb.13304. DOI
Clark JA, May RM. Taxonomic Bias in Conservation Research. Science. 2002;297:191–192. doi: 10.1126/science.297.5579.191b. PubMed DOI
Hughes AC, Qiao H, Orr MC. Extinction Targets Are Not SMART (Specific, Measurable, Ambitious, Realistic, and Time Bound) BioScience. 2021;71:115–118. doi: 10.1093/biosci/biaa148. PubMed DOI PMC
Bellon AM. Does animal charisma influence conservation funding for vertebrate species under the US Endangered Species Act? Environ. Econ. Policy Stud. 2019;21:399–411. doi: 10.1007/s10018-018-00235-1. DOI
Ford AT, Cooke SJ, Goheen JR, Young TP. Conserving Megafauna or Sacrificing Biodiversity? BioScience. 2017;67:193–196.
Furey, N. M. & Racey, P. A. Conservation Ecology of Cave Bats. Bats in the Anthropocene: Conservation of Bats in a Changing World, Springer International Publishing, 463–500 (2016).
Tanalgo, K., Oliveira, H. & Hughes, A. Developing global vulnerabilities and conservation priorities for cave-dwelling bats. 10.21203/rs.3.rs-492875/v1 (2021).
Simmons, N. & Cirranello, A. Bat species of the World: A taxonomic and geographic database. https://batnames.org/ (2020).
Frick WF, Kingston T, Flanders J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. 2020;1469:5–25. doi: 10.1111/nyas.14045. PubMed DOI
Tanalgo KC, Tabora JAG, Hughes AC. Bat cave vulnerability index (BCVI): A holistic rapid assessment tool to identify priorities for effective cave conservation in the tropics. Ecol. Indic. 2018;89:852–860. doi: 10.1016/j.ecolind.2017.11.064. DOI
Mammola S, et al. Scientists’ Warning on the Conservation of Subterranean Ecosystems. BioScience. 2019;69:641–650. doi: 10.1093/biosci/biz064. DOI
Whitten T. Applying ecology for cave management in China and neighbouring countries. J. Appl. Ecol. 2009;46:520–523. doi: 10.1111/j.1365-2664.2009.01630.x. DOI
Wynne JJ, et al. A conservation roadmap for the subterranean biome. Conserv. Lett. 2021;14:e12834. doi: 10.1111/conl.12834. DOI
Sánchez-Fernández D, Galassi DMP, Wynne JJ, Cardoso P, Mammola S. Don’t forget subterranean ecosystems in climate change agendas. Nat. Clim. Change. 2021;11:458–459. doi: 10.1038/s41558-021-01057-y. DOI
Ferreira RL, Martins RP. Trophic structure and natural history of bat guano invertebrate communities, with special reference to Brazilian caves. Trop. Zool. 1999;12:231–252. doi: 10.1080/03946975.1999.10539391. DOI
Ferreira, R. L. Guano communities. Encyclopedia of Caves, Academic Press, 474–484 (2019).
Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats. Oxford University Press (2019).
Iskali G, Zhang Y. Guano Subsidy and the Intertibrate Community in Bracken Cave: The World’s Larges Colony of Bats. J. Cave Karst Stud. 2015;77:28–36. doi: 10.4311/2013LSC0128. DOI
Keith DA, et al. The IUCN Red List of Ecosystems: Motivations, Challenges, and Applications. Conserv. Lett. 2015;8:214–226. doi: 10.1111/conl.12167. DOI
UNEP/EUROBATS. UNEP/EUROBATS | Agreement on the Conservation of Populationsof European Bats. https://www.eurobats.org/ (2020).
IUCN. The IUCN Red List of Threatened Species. Version 2020-1. https://www.iucnredlist.org/ (2021).
Olson DM, et al. Terrestrial Ecoregions of the World: A New Map of Life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience. 2001;51:933–938. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI
Ceballos G, Ehrlich PR. Mammal Population Losses and the Extinction Crisis. Science. 2002;296:904–907. doi: 10.1126/science.1069349. PubMed DOI
Faurby S, et al. PHYLACINE 1.2: The Phylogenetic Atlas of Mammal Macroecology. Ecology. 2018;99:2626–2626. doi: 10.1002/ecy.2443. PubMed DOI
Pacifici M, et al. Generation length for mammals. Nat. Conserv. 2013;5:89–94. doi: 10.3897/natureconservation.5.5734. DOI
Wilman H, et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology. 2014;95:2027–2027. doi: 10.1890/13-1917.1. DOI
Salafsky N, et al. A Standard Lexicon for Biodiversity Conservation: Unified Classifications of Threats and Actions. Conserv. Biol. 2008;22:897–911. doi: 10.1111/j.1523-1739.2008.00937.x. PubMed DOI
Phelps K, Jose R, Labonite M, Kingston T. Correlates of cave-roosting bat diversity as an effective tool to identify priority caves. Biol. Conserv. 2016;201:201–209. doi: 10.1016/j.biocon.2016.06.023. DOI
Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosciences116 (2011).
Crowther, T., Glick, H. & Covey, K. Global tree density map. https://elischolar.library.yale.edu/yale_fes_data/1/ (2015). PubMed PMC
Yamazaki D, Trigg MA, Ikeshima D. Development of a global ~90m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015;171:337–351. doi: 10.1016/j.rse.2015.10.014. DOI
Song X-P, et al. Global land change from 1982 to 2016. Nature. 2018;560:639–643. doi: 10.1038/s41586-018-0411-9. PubMed DOI PMC
Meijer JR, Huijbregts MAJ, Schotten KCGJ, Schipper AM. Global patterns of current and future road infrastructure. Environ. Res. Lett. 2018;13:064006. doi: 10.1088/1748-9326/aabd42. DOI
Labay, K. et al. Global Distribution of Selected Mines, Deposits, and Districts of Critical Minerals. 10.5066/F7GH9GQR (2017).
Earth at Night (Black Marble) 2016 Color Maps. https://www.visibleearth.nasa.gov/images/144898/earth-at-night-black-marble-2016-color-maps (2019).
Maggi F, Tang FHM, Cecilia Dla, McBratney A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data. 2019;6:1–20. doi: 10.1038/s41597-019-0169-4. PubMed DOI PMC
Hughes AC. Understanding and minimizing environmental impacts of the Belt and Road Initiative. Conserv. Biol. 2019;33:883–894. doi: 10.1111/cobi.13317. PubMed DOI
SEDAC. Population Density, v4: Gridded Population of the World (GPW), v4 | SEDAC (2020).
Carlson CJ, et al. A global parasite conservation plan. Biol. Conserv. 2020;250:108596. doi: 10.1016/j.biocon.2020.108596. DOI
Haelewaters D, et al. Parasites of parasites of bats: Laboulbeniales (Fungi: Ascomycota) on bat flies (Diptera: Nycteribiidae) in central Europe. Parasit. Vectors. 2017;10:96. doi: 10.1186/s13071-017-2022-y. PubMed DOI PMC
de Groot MD, et al. On the Fly: Tritrophic Associations of Bats, Bat Flies, and Fungi. J. Fungi. 2020;6:361. doi: 10.3390/jof6040361. PubMed DOI PMC
Dick, C. & Graciolli, G. Checklist of World Streblidae (Diptera: Hippoboscoidea). https://www.researchgate.net/publication/322578987_CHECKLIST_OF_WORLD_STREBLIDAE_DIPTERA_HIPPOBOSCOIDEA (2018).
Graciolli, G. & Dick, C. Checklist of World Nycteribiidae (Diptera: Hippoboscoidea). https://www.researchgate.net/publication/322579074_CHECKLIST_OF_WORLD_NYCTERIBIIDAE_DIPTERA_HIPPOBOSCOIDEA (2018).
Index Fungorum. Index Fungorum. http://www.indexfungorum.org/names/names.asp.
Haelewaters D, Hiller T, Dick CW. Bats, Bat Flies, and Fungi: A Case of Hyperparasitism. Trends Parasitol. 2018;34:784–799. doi: 10.1016/j.pt.2018.06.006. PubMed DOI
Haelewaters, D., Dick, C. W., Cocherán Pittí, K. P., Dittmar, K. & Patterson, B. D. Bats, Bat Flies, and Fungi: Exploring Uncharted Waters. 50 Years of Bat Research: Foundations and New Frontiers. Springer International Publishing 349–371 (2021).
Tanalgo K, 2020. Metadata for: DarkCideS 1.0, a global database for bats in karsts and caves. figshare. PubMed DOI PMC
Hortal J, et al. Seven Shortfalls that Beset Large-Scale Knowledge of Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2015;46:523–549. doi: 10.1146/annurev-ecolsys-112414-054400. DOI