High poly ε-caprolactone biodegradation activity by a new Acinetobacter seifertii isolate
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35384558
DOI
10.1007/s12223-022-00964-7
PII: 10.1007/s12223-022-00964-7
Knihovny.cz E-zdroje
- Klíčová slova
- Acinetobacter seifertii, Biodegradation, Bioplastic, PCL depolymerase, Poly ε-caprolactone,
- MeSH
- Acinetobacter MeSH
- biodegradace MeSH
- kapronáty MeSH
- laktony MeSH
- polyestery * metabolismus MeSH
- RNA ribozomální 16S genetika MeSH
- uhlík * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- caprolactone MeSH Prohlížeč
- kapronáty MeSH
- laktony MeSH
- polyestery * MeSH
- RNA ribozomální 16S MeSH
- uhlík * MeSH
Poly(ε-caprolactone; PCL) is an attractive biodegradable polymer that has been increasingly used to solve environmental problems caused by plastic wastes. In the present study, 468 bacterial isolates were recovered from soil samples and screened for PCL degradation activity. Of the isolates, 37 (7.9%) showed PCL depolymerase activity on PCL agar medium, with the highest activity being by isolate S22 which was identified using 16S rRNA and rpoB gene sequencing as Acinetobacter seifertii. Scanning electron microscopy and Fourier transform infrared spectroscopy confirmed the degradation of PCL films after treatment with A. seifertii S22. The PCL depolymerase activity of A. seifertii S22 relied on the activity of esterase which occurred at an optimum temperature of 30-40 °C. The highest PCL depolymerase activity (35.5 ± 0.7 U/mL) was achieved after culturing A. seifertii S22 for 6 h in mineral salt medium (MSM) containing 0.1% Tween 20 and 0.02% ammonium sulfate as the carbon and nitrogen sources, respectively, which was approximately 20-fold higher than for cultivation in MSM supplemented with 0.1% PCL as sole carbon source. The results suggested that A. seifertii S22 or its enzymes could be used for PCL bioplastic degradation.
Zobrazit více v PubMed
Ay Sal F, Colak DN, Guler HI, Canakci S, Belduz AO (2019) Biochemical characterization of a novel thermostable feruloyl esterase from Geobacillus thermoglucosidasius DSM 2542T. Mol Biol Rep 46(4):4385–4395 PubMed DOI
Bartnikowski M, Dargaville TR, Ivanovski S, Hutmacher DW (2019) Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog Polym Sci 96:1–20 DOI
Calabrò PS, Grosso M (2018) Bioplastics and waste management. Waste Manage 78:800–801 DOI
Carvalheira A, Silva J, Teixeira P (2021) Acinetobacter spp. in food and drinking water – a review. Food Microbiol 95:103675 PubMed DOI
Dash TK, Konkimalla VB (2012) Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J of Control Release 158(1):15–33 DOI
Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic pollution in the World’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One 9(12):111913 DOI
Filho W, Saari U, Fedoruk M, Iital A, Moora H, Klöga M, Voronova V (2019) An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. J Clean Prod 214:550–558 DOI
Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):1700782 DOI
Gottschalk LMF, Paredes RdS, Teixeira RSS, Silva ASAd, Bon EPdS (2013) Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1. Braz J Microbiol 44(2):569–576 PubMed DOI PMC
Gundi VAKB, Dijkshoorn L, Burignat S, Raoult D, La Scola B (2009) Validation of partial rpoB gene sequence analysis for the identification of clinically important and emerging Acinetobacter species. J Microbiol 155(7):2333–2341 DOI
Gupta A, Maharjan A, Kim BS (2019) Shape memory polyurethane and its composites for various applications. Appl Sci 9(21):4694 DOI
Gutiérrez TJ, Mendieta JR, Ortega-Toro R (2021) In-depth study from gluten/PCL-based food packaging films obtained under reactive extrusion conditions using chrome octanoate as a potential food grade catalyst. Food Hydrocoll 111:106255 DOI
Harding CM, Hennon SW, Feldman MF (2018) Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 16(2):91–102 PubMed DOI
Haryńska A, Kucinska-Lipka J, Sulowska A, Gubanska I, Kostrzewa M, Janik H (2019) Medical-grade PCL based polyurethane system for FDM 3D printing–characterization and fabrication. Materials 12(6):887 DOI PMC
Howard GT, Norton WN, Burks T (2012) Growth of Acinetobacter gerneri P7 on polyurethane and the purification and characterization of a polyurethanase enzyme. Biodegradation 23(4):561–573 PubMed DOI
Khan I, Ray Dutta J, Ganesan R (2017) Lactobacillus sps. lipase mediated poly (ε-caprolactone) degradation. Int J Biol Macromol 95:126–131 PubMed DOI
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549 PubMed DOI PMC
La Scola B, Gundi VAKB, Khamis A, Raoult D (2006) Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol 44(3):827–832 PubMed DOI PMC
Law KL (2017) Plastics in the marine environment. Ann Rev Mar Sci 9(1):205–229 PubMed DOI
Lee S-Y, Ten LN, Das K, You Y-H, Jung H-Y (2021) Biodegradative activities of fungal strains isolated from terrestrial environments in Korea. Mycobiology 1–9
Li WC, Tse HF, Fok L (2016) Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ 566–567:333–349 PubMed DOI
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275 PubMed DOI
Ma P, Li Y, Miao C, Sun Y, Liu C, Li H (2019) Production of tween 80-inducing esterase by Acinetobacter sp. B1 using response surface methodology. Microbiol Biotechnol Lett 47(1):87–95 DOI
Ma Q, Shi K, Su T, Wang Z (2020) Biodegradation of polycaprolactone (PCL) with different molecular weights by Candida antarctica lipase. J Polym Environ 28(11):2947–2955 DOI
Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N (2018) PCL and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed 29(7–9):863–893 PubMed DOI
Mandic M, Spasic J, Ponjavic M, Nikolic MS, Cosovic VR, O’Connor KE, Nikodinovic-Runic J, Djokic L, Jeremic S (2019) Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. Polym Degrad Stab 162:160–168 DOI
Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62(2):456 PubMed DOI PMC
Muthuraj R, Misra M, Mohanty AK (2018) Biodegradable compatibilized polymer blends for packaging applications: A literature review. J Appl Polym Sci 135(24):45726 DOI
Nawaz A, Hasan F, Shah AA (2014) Degradation of poly(epsilon-caprolactone) (PCL) by a newly isolated Brevundimonas sp. strain MRL-AN1 from soil. FEMS Microbiol Lett 362(1):1–7 PubMed DOI
Nemec A, Krizova L, Maixnerova M, Sedo O, Brisse S, Higgins PG (2015) Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolated from human clinical specimens. Int J Syst Evol Microbiol 65:934–942 PubMed DOI
Nemec A, Radolfova-Krizova L, Maixnerova M, Nemec M, Spanelova P, Safrankova R, Sedo O, Lopes BS, Higgins PG (2021) Delineation of a novel environmental phylogroup of the genus Acinetobacter encompassing Acinetobacter terrae sp. Nov., Acinetobacter terrestris sp. Nov. and three other tentative species. Syst Appl Microbiol 44(4):126–217 DOI
Park H-J, Jeon JH, Kang SG, Lee J-H, Lee S-A, Kim H-K (2007) Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein Expr and Purif 52(2):340–347 DOI
Pathak S, Sneha CLR, Mathew BB (2014) Bioplastics: its timeline based scenario & challenges. J Polym Biopolym Phys Chem 2(4):84–90
Pathak VM, Navneet (2017) Review on the current status of polymer degradation: a microbial approach. Bioresour Bioprocess 4(1):15 DOI
Penkhrue W, Khanongnuch C, Masaki K, Pathom-aree W, Punyodom W, Lumyong S (2015) Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World J Microbiol Biotechnol 31(9):1431–1442 PubMed DOI
PlasticsEurope (2018) Plastics - the facts 2018: an analysis of European plastics production, demand and waste data 2018. https://www.plasticseurope.org/application/files/6315/4510/9658/Plastics_the_facts_2018_AF_web.pdf . Accessed 1 Jul 2021
Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43(1):254–269 DOI
Soliman NA, Knoll M, Abdel-Fattah YR, Schmid RD, Lange S (2007) Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem 42(7):1090–1100 DOI
Spierling S, Knüpffer E, Behnsen H, Mudersbach M, Krieg H, Springer S, Albrecht S, Herrmann C, Endres H-J (2018) Bio-based plastics - a review of environmental, social and economic impact assessments. J Clean Prod 185:476–491 DOI
Suzuki M, Tachibana Y, Kasuya K-i (2021) Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polym J 53(1):47–66 DOI
Thammasittirong A, Attathom T (2008) PCR-based method for the detection of cry genes in local isolates of Bacillus thuringiensis from Thailand. J Invertebr Pathol 98(2):121–126 PubMed DOI
Tiago I, Teixeira I, Silva S, Chung P, Veríssimo A, Manaia CM (2004) Metabolic and genetic diversity of mesophilic and thermophilic bacteria isolated from composted municipal sludge on poly-ε-caprolactones. Curr Microbiol 49(6):407–414 PubMed DOI
Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742 PubMed DOI PMC
Torres S, Baigorí MD, Pandey A, Castro GR (2008) Production and purification of a solvent-resistant esterase from Bacillus licheniformis S-86. Appl Biochem Biotechnol 151(2):221–232 PubMed DOI
Urbanek AK, Rymowicz W, Strzelecki MC, Kociuba W, Franczak Ł, Mirończuk AM (2017) Isolation and characterization of Arctic microorganisms decomposing bioplastics. AMB Express 7(1):148 PubMed DOI PMC
Vijayakumar S, Biswas I, Veeraraghavan B (2019) Accurate identification of clinically important Acinetobacter spp.: an update. Future Sci OA 5(6):FSO395
Wang J, Ruan Z, Feng Y, Fu Y, Jiang Y, Wang H, Yu Y (2014) Species distribution of clinical Acinetobacter isolates revealed by different identification techniques. PLoS One 9(8):104882 DOI
Wu C-S (2010) Preparation and characterizations of polycaprolactone green coconut fiber composites. J Appl Polym Sci 115:948–956 DOI