Abiotic Factors from Different Ecuadorian Regions and Their Contribution to Antioxidant, Metabolomic and Organoleptic Quality of Theobroma cacao L. Beans, Variety "Arriba Nacional"

. 2022 Apr 03 ; 11 (7) : . [epub] 20220403

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35406956

Fine flavor cocoa is a unique category of cocoa that produces almonds with high aromatic potential and several sensory benefits that make it different from the basic or ordinary cocoas. Ecuador is the world's leader in the production and export of fine flavor cocoa, responsible for 63% of the world's total production due to the commercialization of the Arriba Nacional variety, known to possess an intense aroma that is unique in the cocoa world market. Besides its organoleptic specificity, this variety represents a source of important bioactive compounds associated with both sensory and health properties. This study evaluates the influence of an abiotic factor, nutritional soil status, on the phytochemical composition (methylxantines and phenolic compounds), and antioxidant and sensory properties of Arriba variety cocoa beans originating from three different geographical regions of Ecuador. We used the Diagnosis and Recommendation Integrated System (DRIS), Folin-Ciocalteau, high-performance liquid chromatography (HPLC), ABTS free-radical-scavenging activity, the α, α-diphenyl-β-picrylhydrazyl free-radical-scavenging method (DPPH), and Ferric reducing antioxidant power (FRAP) analysis to reveal a significant correlation between Mn ions and total phenolic content, a positive implication of N in methylxanthine composition and antioxidant properties, and the importance of Ca, Mg, and K ions in increasing the flavonoid and anthocyanin content of raw cocoa beans. We showed that these nutritional elements can interfere with the nutraceutical and sensory properties of cocoa beans, as Cu, Mg, and K are correlated with anthocyaninic content, while Fe, Ca, P and Zn influenced the flavonoid content. We underline that the Arriba variety is suitable not only for the production of high-quality chocolate, but also for the increasing worldwide nutraceutical market, generating qualitative and competitive products.

Zobrazit více v PubMed

Ceccarelli V., Fremout T., Zavaleta D., Lastra S., Correa S.I., Arévalo-Gardini E., Rodriguez C.A., Cruz Hilacondo W., Thomas E. Climate change impact on cultivated and wild cacao in Peru and the search of climate change-tolerant genotypes. Divers. Distrib. 2021;27:1462–1476. doi: 10.1111/ddi.13294. DOI

Zarrillo S., Gaikwad N., Lanaud C., Powis T., Viot C., Lesur I., Fouet O., Argout X., Guichoux E., Salin F., et al. The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nat. Ecol. Evol. 2018;2:1879–1888. doi: 10.1038/s41559-018-0697-x. PubMed DOI

De Souza P.A., Moreira L.F., Sarmento D.H.A., da Costa F.B. Cacao—Theobroma cacao. In: Sueli R., De Oliveira Silva E., Edy Sousa de Brito E., editors. Exotic Fruits. Academic Press; Cambridge, MA, USA: 2018. pp. 69–76.

Cocoa Bean Production Worldwide 2019/20–2021/22, by Country. [(accessed on 26 April 2021)]. Available online: https://www.statista.com/statistics/263855/cocoa-bean-production-worldwide-by-region.

Amoye S. Cocoa sourcing, world economics and supply. Manuf. Confect. 2006;86:81–85.

Moreno-Miranda C., Jordán J., Moreno-Miranda R., Moreno P., Solis J. Protected designation of origin and sustainability characterization: The case of PDO cocoa Arriba. Agriculture. 2019;9:229. doi: 10.3390/agriculture9100229. DOI

Evans S.J. Chocolate Unwrapped: Taste & Ebjoy the World’s Finest Chocolate. 1st ed. Pavillion; Shoreham, UK: 2010. p. 240.

Kongor J.E., Hinneh M., de Walle D.V., Afoakwa E.O., Boeckx P., Dewettinck K. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile: A review. Food Res. Inter. 2016;82:44–52. doi: 10.1016/j.foodres.2016.01.012. DOI

Tomas-Barberan F.A., Cienfuegos-Jovellanos E., Marin A., Muguerza B., Gil-Izquierdo A., Cerda B., Zafrilla P., Morillas J., Mulero J., Ibarra A., et al. A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J. Agric. Food Chem. 2007;104:3926–3935. doi: 10.1021/jf070121j. PubMed DOI

Oracz J., Zyzelewicz D., Nebesny E. The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: A review. Crit. Rev. Food Sci. Nutr. 2015;55:1176–1192. doi: 10.1080/10408398.2012.686934. PubMed DOI

Urbanska B., Kowalska J. Comparison of the total polyphenol content and antioxidant activity of chocolate obtained from roasted and unroasted cocoa beans from different regions of the world. Antioxidants. 2019;8:283. doi: 10.3390/antiox8080283. PubMed DOI PMC

Data on Production and Grindings of Cocoa Beans. [(accessed on 22 February 2022)]. Available online: https://www.icco.org/statistics/#tab-id-7.

Monteiro J.P., Alves M.G., Oliveira P.F., Silva B.M. Structure-bioactivity relationships of methylxanthines: Trying to make sense of all the promises and the drawbacks. Molecules. 2016;21:974. doi: 10.3390/molecules21080974. PubMed DOI PMC

Franco R., Oñatibia-Astibia A., Martínez-Pinilla E. Health benefits of methylxanthines in cacao and chocolate. Nutrients. 2013;5:4159–4173. doi: 10.3390/nu5104159. PubMed DOI PMC

Jang M.H., Kang N.H., Mukherjee S., Yun J.W. Theobromine, a methylxanthine in cocoa bean, stimulates thermogenesis by inducing white fat browning and activating brown adipocytes. Biotechnol. Bioproc. 2018;23:617–626. doi: 10.1007/s12257-018-0434-y. DOI

Rojo-Poveda O., Zeppa G., Ferrocino I., Stévigny C., Barbosa-Pereira L. Chemometric classification of cocoa bean shells based on their polyphenolic profile determined by RP-HPLC-PDA analysis and spectrophotometric assays. Antioxidants. 2021;10:1533. doi: 10.3390/antiox10101533. PubMed DOI PMC

Brunetto M., Gutiérrez L., Delgado Y., Gallignani M., Zambrano A., Gómez Á., Ramos G., Romero C. Determination of theobromine, theophylline and caffeine in cocoa samples by a high-performance liquid chromatographic method with on-line sample cleanup in a switching-column system. Food Chem. 2007;100:459–467. doi: 10.1016/j.foodchem.2005.10.007. DOI

Siow C.S., Chan E.C.C., Wong C.W., Ng C.W. Antioxidant and sensory evaluation of cocoa (Theobroma cacao L.) tea formulated with cocoa bean hull of different origins. Future Foods. 2022;5:100108. doi: 10.1016/j.fufo.2021.100108. DOI

Bernays E.A., Oppenheim S., Chapman R.F., Kwon H., Gould F. Taste sensitivity of insect herbivores to deterrents is greater in specialists than in generalists: A behavioral test of the hypothesis with two closely related caterpillars. J. Chem. Ecol. 2000;26:547–563. doi: 10.1023/A:1005430010314. DOI

Evans W. Trease and Evans’ Pharmacognosy. 16th ed. Elsevier; Amsterdam, The Netherlands: 2009. pp. 1–600.

Beg M.S., Ahmad S., Jan K., Bashir K. Status, supply chain and processing of cocoa—A review. Trends Food Sci. Technol. 2017;66:108–116. doi: 10.1016/j.tifs.2017.06.007. DOI

Latif R. Health benefits of Cocoa. Curr. Opin. Clin. Nutr. Metab. Care. 2013;16:669–674. doi: 10.1097/MCO.0b013e328365a235. PubMed DOI

Arlorio M., Locatelli M., Travaglia F., Coisson J., Grosso E., Minassi A., Appendino G., Martelli A. Roasting impact on the contents of clovamide (N-caffeoyl-L-DOPA) and the antioxidant activity of cocoa beans (Theobroma cacao L.) Food Chem. 2008;106:967–975. doi: 10.1016/j.foodchem.2007.07.009. DOI

Andres-Lacueva C., Monagas M., Khan M., Izquierdo-Pulido M., Urpi-Sarda M., Permanyer J., Lamuela-Raventós R.M. Flavanol and flavonol contents of cocoa powder products: Influence of the manufacturing process. J. Agric. Food Chem. 2008;6:3111–3117. doi: 10.1021/jf0728754. PubMed DOI

Elwers S., Zambrano A., Rohsius C., Lieberei R. Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.) Eur. Food Res. Technol. 2009;229:937–948. doi: 10.1007/s00217-009-1132-y. DOI

Kothe L., Zimmermann B.F., Galensa R. Temperature influences epimerization and composition of flavanol monomers, dimers and trimers during cocoa bean roasting. Food Chem. 2013;141:3656–3663. doi: 10.1016/j.foodchem.2013.06.049. PubMed DOI

Della Sala P., Cilas C., Gimeno T.E., Wohl S., Opoku S.Y., Găinuşă-Bogdan A., Ribeyre F. Assessment of atmospheric and soil water stress impact on a tropical crop: The case of Theobroma cacao under Harmattan conditions in eastern Ghana. Agric. For. Meteorol. 2021;311:108670. doi: 10.1016/j.agrformet.2021.108670. DOI

Nissim-Levi A., Ovadia R., Forer I., Oren-Shamir M. Increased anthocyanin accumulation in ornamental plants due to magnesium treatment. J. Hortic. Sci. Biotechnol. 2007;82:481–487. doi: 10.1080/14620316.2007.11512262. DOI

Tanaka Y., Ohmiya A. Seeing is believing: Engineering anthocyanin and carotenoid biosynthetic pathways. Curr. Opin. Biotechnol. 2008;19:190–197. doi: 10.1016/j.copbio.2008.02.015. PubMed DOI

Galieni A., Di Mattia C., De Gregorio M., Speca S., Mastrocola D., Pisante M., Stagnari F. Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.) Sci. Hortic. 2015;187:93–101. doi: 10.1016/j.scienta.2015.02.036. DOI

Xu W., Peng H., Yang T., Whitaker B., Huang L., Sun J., Chen P. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation. Plant. Physiol. Bioch. 2014;82:289–298. doi: 10.1016/j.plaphy.2014.06.015. PubMed DOI

Shah A., Smith D.L. Flavonoids in agriculture: Chemistry and roles in biotic and abiotic stress responses, and microbial associations. Agronomy. 2020;10:1209. doi: 10.3390/agronomy10081209. DOI

Jan R., Asaf S., Numan M., Lubna L., Kim K.-M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy. 2021;11:968. doi: 10.3390/agronomy11050968. DOI

Lattanzio V. Phenolic Compounds: Introduction. In: Ramawat K., Mérillon J.M., editors. Natural Products. Springer; Berlin/Heidelberg, Germany: 2013. pp. 1543–1580.

Fabre F., Planchon C. Nitrogen nutrition, yield and protein content in soybean. Plant. Sci. 2000;152:51–58. doi: 10.1016/S0168-9452(99)00221-6. DOI

Ahmad A., Fatemeh H., Mahnaz A., Hameidreza S. Effects of nitrogen sources and levels on growth and alkaloid content of periwinkle. Asian J. Plant. Sci. 2006;5:271–276.

Martínez-Pinilla E., Oñatibia-Astibia A., Franco R. The relevance of theobromine for the beneficial effects of cocoa consumption. Front. Pharmacol. 2015;6:1–5. doi: 10.3389/fphar.2015.00030. PubMed DOI PMC

Gülçin I., Bursal E., Hilal Şehitoğlu M., Bilsel M., Gören A.C. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem. Toxicol. 2011;48:2227–2238. doi: 10.1016/j.fct.2010.05.053. PubMed DOI

Woodrow P., Ciarmiello L.F., Annunziata M.G., Pacifico S., Iannuzzi F., Mirto A., D’Amelia L., Dell’Aversana E., Piccolella S., Fuggi A., et al. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol. Plant. 2017;159:290–312. doi: 10.1111/ppl.12513. PubMed DOI

Stark T., Bareuther S., Hofmann T. Molecular definition of the taste of roasted cocoa nibs (Theobroma cacao) by means of quantitative studies and sensory experiments. J. Agric. Food Chem. 2006;54:5530–5539. doi: 10.1021/jf0608726. PubMed DOI

Fang Y.L.R., Chu Z., Zhu K., Gu F., Zhang Y. Chemical and flavor profile changes of cocoa beans (Theobroma cacao L.) during primary fermentation. Food Sci. Nutr. 2020;8:4121–4133. doi: 10.1002/fsn3.1701. PubMed DOI PMC

Misnawi J.S., Jamilah B., Nazamid S. Sensory properties of cocoa liquor as affected by polyphenol concentration and duration of roasting. FQAP. 2004;15:403–409. doi: 10.1016/S0950-3293(03)00097-1. DOI

Cevallos-Cevallos J.M., Gysel L., Maridueña-Zavala M.G., Molina-Miranda M.J. Time-related changes in volatile compounds during fermentation of bulk and fine-flavor cocoa (Theobroma cacao) beans. J. Food Qual. 2018;6:1–14. doi: 10.1155/2018/1758381. DOI

Hammerstone J.F., Lazarus S.A., Mitchell A.E., Rucker R., Schmitz H.H. Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography/mass spectrometry. J. Agric. Food Chem. 1999;47:490–496. doi: 10.1021/jf980760h. PubMed DOI

Farnezi M.M.M., Silva E.B., Guimarães P.T.G. Diagnose nutricional de cafeiros da região do AltoJequitinhonha (MG): Normas DRIS e faixas críticas de nutrientes. Rev. Bras. Ciênc. Solo. 2009;33:969–978. doi: 10.1590/S0100-06832009000400021. DOI

Madaan R., Bansal G., Kumar S., Sharma A. Estimation of total phenols and flavonoids in extracts of Actaea spicata roots and antioxidant activity studies. Indian J. Pharm. Sci. 2011;73:666–669. doi: 10.4103/0250-474X.100242. PubMed DOI PMC

Lin J.Y., Tang C.Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effect on mouse splenocyte proliferation. Food Chem. 2007;101:140–147. doi: 10.1016/j.foodchem.2006.01.014. DOI

Arvouet-Grand A., Vennat B., Pourrat A., Legret P. Standardization of propolis extract and identification of principal constituents. J. Pharm. Belg. 1994;49:462–468. PubMed

Jungmin L., Barnes K.W., Eisele T., Giusti M.M., Haché J., Hofsommer H., Koswig S., Krueger D.A., Kupina S., Martin S.K., et al. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005;88:1269–1278. PubMed

Katsagonis A., Atta-Politou J., Koupparis M.A. HPLC method with UV detection for the determination of trans-resveratrol in plasma. J. Liq. Chromatogr. Relat. Technol. 2005;28:1393–1405. doi: 10.1081/JLC-200054884. DOI

Thu V.V., Franco C., Zhang W. Treatment strategies for high resveratrol induction in Vitis vinifera L. cell suspension culture. Biotechnol. Rep. 2014;1:15–21. PubMed PMC

Febrianto N.A., Zhu F. Composition of methylxanthines, polyphenols, key odorant volatiles and minerals in 22 cocoa beans obtained from different geographic origins. LWT. 2022;153:112395. doi: 10.1016/j.lwt.2021.112395. DOI

Loizzo M.R., Pacetti D., Lucci P., Núñez O., Menichini F., Frega N.G., Tundis R. Prunus persica var. platycarpa (Tabacchiera Peach): Bioactive compounds and antioxidant activity of pulp, peel and seed ethanolic extracts. Plant Foods Hum. Nutr. 2015;70:331–337. PubMed

Guo D.J., Cheng H.L., Chan S.W., Yu P.H.F. Antioxidative activities and the total phenolic contents of tonic Chinese medicinal herbs. Inflammopharmacology. 2008;16:201–207. doi: 10.1007/s10787-008-8016-9. PubMed DOI

Simirgiotis M.J., Schmeda-Hirschmann G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. chiloensis form chiloensis) using HPLC-DAD-ESI-MS and free radical quenching techniques. J. Food Compos. Anal. 2010;23:545–553. doi: 10.1016/j.jfca.2009.08.020. DOI

Benzie I.F.F., Szeto Y.T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 1999;47:633–636. doi: 10.1021/jf9807768. PubMed DOI

Marrocos P.C.L., Loureiro G.A.H.D.A., De Araujo Q.R., Sodré G.A., Ahnert D., Baligar V.C. Mineral nutrient ratios and cacao productivity. J. Plant Nutr. 2020;43:1–15. doi: 10.1080/01904167.2020.1771582. DOI

Gieseking J.E., Snider H.J., Getz C.A. Destruction of organic matter in plant material by the use of nitric and perchloric acids. Ind. Eng. Chem. Anal. Ed. 1935;7:185–186. doi: 10.1021/ac50095a021. DOI

Gee A., Domingues L., Dietz V. Constituents in sugar. Anal. Chem. 1954;26:1487–1492. doi: 10.1021/ac60093a024. DOI

Walworth J., Sumner M. The diagnosis and recommendation integrated system (DRIS) Adv. Soil. Sci. 1987;6:149–187.

Parent L.E., Dafir M. A Theoretical concept of compositional nutrient diagnosis. J. Am. Soc. Hortic. Sci. 1992;117:239–242. doi: 10.21273/JASHS.117.2.239. DOI

Beaufils E.R. Diagnosis and recommendation integrated system (DRIS) a general scheme for experimentation and calibration based on principle developed from research in plant nutrition. S. Afr. Soil Sci. Bull. 1973;1:1–132.

Epstein E., Bloom A.J. Mineral Nutrition of Plants: Principle and Perspectives. Sinauer Associates Inc.; Sunderlands, MA, USA: 2005.

Lawless H.T., Heymann H. Sensory Evaluation of Food: Principles and Practices. Chapman & Hall; New York, NY, USA: 1998. pp. 606–608.

Vázquez-Ovando A., Chacón-Martínez L., Betancur-Ancona D., Escalona-Buendía H., Salvador-Figueroa M. Sensory descriptors of cocoa beans from cultivated trees of Soconusco, Chiapas, Mexico. Food Sci. Technol. 2015;35:285–290. doi: 10.1590/1678-457X.6552. DOI

Machado Cuellar L., Ordoñez Espinosa C.M., Angel Sánchez Y.K., Guaca Cruz L., Suárez Salazar J.C. Evaluación de la calidad organoléptica de Theobroma cacao L. en fincas cacaoteras en el norte de Huila, Colombia. Acta Agron. 2018;67:46–52. doi: 10.15446/acag.v67n1.66572. DOI

Burgos D., Almonte D.L.S., Cardenas H., Caspersen B., Choy M., Contreras M., Dominguez M., Flores L., Gomez J., Kintzer B., et al. Guide to the Cacao Sensory Analysis Tasting Form. Equal Exchange Creative; West Bridgewater, MA, USA: 2008.

Dytham C. Choosing and Using Statistics: A Biologists Guide. 2nd ed. Blackwell Science; York, UK: 2003.

XLSTAT Pro. Addinsoft; Paris, France: 2013. Data Analysis and Statistical Solution for Microsoft Excel.

FCA . InfoStat. Universidad Nacional de Córdoba; Cordoba, Argentina: 2020.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...