Macrophage-like Cells Are Responsive to Titania Nanotube Intertube Spacing-An In Vitro Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PCE 55/2017
Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii
PubMed
35408918
PubMed Central
PMC8998567
DOI
10.3390/ijms23073558
PII: ijms23073558
Knihovny.cz E-zdroje
- Klíčová slova
- TiO2 nanotubes, cytokines, inflammation, intertube spacing, macrophage, osteoclastogenesis,
- MeSH
- makrofágy metabolismus MeSH
- nanotrubičky * MeSH
- povrchové vlastnosti MeSH
- titan * metabolismus farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- titan * MeSH
- titanium dioxide MeSH Prohlížeč
With the introduction of a new interdisciplinary field, osteoimmunology, today, it is well acknowledged that biomaterial-induced inflammation is modulated by immune cells, primarily macrophages, and can be controlled by nanotopographical cues. Recent studies have investigated the effect of surface properties in modulating the immune reaction, and literature data indicate that various surface cues can dictate both the immune response and bone tissue repair. In this context, the purpose of the present study was to investigate the effects of titanium dioxide nanotube (TNT) interspacing on the response of the macrophage-like cell line RAW 264.7. The cells were maintained in contact with the surfaces of flat titanium (Ti) and anodic TNTs with an intertube spacing of 20 nm (TNT20) and 80 nm (TNT80), under standard or pro-inflammatory conditions. The results revealed that nanotube interspacing can influence macrophage response in terms of cell survival and proliferation, cellular morphology and polarization, cytokine/chemokine expression, and foreign body reaction. While the nanostructured topography did not tune the macrophages' differentiation into osteoclasts, this behavior was significantly reduced as compared to flat Ti surface. Overall, this study provides a new insight into how nanotubes' morphological features, particularly intertube spacing, could affect macrophage behavior.
Advanced Institute for Materials Research Sendai 980 8577 Japan
Department of Materials Science WW4 LKO Friedrich Alexander University 91058 Erlangen Germany
Regional Centre of Advanced Technologies and Materials 78371 Olomouc Czech Republic
Zobrazit více v PubMed
Tan A.W., Pingguan-Murphy B., Ahmad R., Akbar S.A. Review of titania nanotubes: Fabrication and cellular response. Ceram. Int. 2012;38:4421–4435. doi: 10.1016/j.ceramint.2012.03.002. DOI
Kulkarni M., Mazare A., Gongadze E., Perutkova Š., Kralj-Iglič V., Milošev I., Schmuki P., Iglič A., Mozetič M. Titanium nanostructures for biomedical applications. Nanotechnology. 2015;26:062002. doi: 10.1088/0957-4484/26/6/062002. PubMed DOI
Wang W., Khoon C. Titanium Alloys in Orthopaedics. In: Sieniawski J., Ziaja W., editors. Titanium Alloys—Advances in Properties Control. InTech; London, UK: 2013.
Verissimo N.C., Chung S., Webster T.J. Surface Coating and Modification of Metallic Biomaterials. Elsevier; Amsterdam, The Netherlands: 2015. New nanoscale surface modifications of metallic biomaterials; pp. 249–273.
Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI
Hotchkiss K.M., Reddy G.B., Hyzy S.L., Schwartz Z., Boyan B.D., Olivares-Navarrete R. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016;31:425–434. doi: 10.1016/j.actbio.2015.12.003. PubMed DOI PMC
Yamaguchi S., Spriano S., Cazzola M. Nanostructured Biomaterials for Regenerative Medicine. Elsevier; Amsterdam, The Netherlands: 2020. Fast and effective osseointegration of dental, spinal, and orthopedic implants through tailored chemistry of inorganic surfaces; pp. 337–377.
Wang J., Meng F., Song W., Jin J., Ma Q., Fei D., Fang L., Chen L., Wang Q., Zhang Y. Nanostructured titanium regulates osseointegration via influencing macrophage polarization in the osteogenic environment. Int. J. Nanomed. 2018;13:4029–4043. doi: 10.2147/IJN.S163956. PubMed DOI PMC
Lee K., Mazare A., Schmuki P. One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 2014;114:9385–9454. doi: 10.1021/cr500061m. PubMed DOI
Park J., Cimpean A., Tesler A.B., Mazare A. Anodic TiO2 Nanotubes: Tailoring Osteoinduction via Drug Delivery. Nanomaterials. 2021;11:2359. doi: 10.3390/nano11092359. PubMed DOI PMC
Guo T., Oztug N.A.K., Han P., Ivanovski S., Gulati K. Untwining the topography-chemistry interdependence to optimize the bioactivity of nano-engineered titanium implants. Appl. Surf. Sci. 2021;570:151083. doi: 10.1016/j.apsusc.2021.151083. DOI
Ion R., Necula M.G., Mazare A., Mitran V., Neacsu P., Schmuki P., Cimpean A. Drug Delivery Systems Based on Titania Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants. Curr. Med. Chem. 2020;27:854–902. doi: 10.2174/0929867326666190726123229. PubMed DOI
Özkan S., Nguyen N.T., Mazare A., Schmuki P. Controlled spacing of self-organized anodic TiO2 nanotubes. Electrochem. Commun. 2016;69:76–79. doi: 10.1016/j.elecom.2016.06.004. DOI
Wei W., Berger S., Hauser C., Meyer K., Yang M., Schmuki P. Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents. Electrochem. Commun. 2010;12:1184–1186. doi: 10.1016/j.elecom.2010.06.014. DOI
Liu N., Lee K., Schmuki P. Small diameter TiO2 nanotubes vs. nanopores in dye sensitized solar cells. Electrochem. Commun. 2012;15:1–4. doi: 10.1016/j.elecom.2011.11.003. DOI
Kulkarni M., Mazare A., Schmuki P., Iglic A. Influence of anodization parameters on morphology of TiO2 nanostructured surfaces. Adv. Mater. Lett. 2016;7:23–28. doi: 10.5185/amlett.2016.6156. DOI
Kim D., Lee K., Roy P., Birajdar B.I., Spiecker E., Schmuki P. Formation of a non-thickness-limited titanium dioxide mesosponge and its use in dye-sensitized solar cells. Angew. Chem. Int. Ed. 2009;48:9326–9329. doi: 10.1002/anie.200904455. PubMed DOI
Lee K., Kim D., Schmuki P. Highly self-ordered nanochannel TiO2 structures by anodization in a hot glycerol electrolyte. Chem. Commun. 2011;47:5789–5791. doi: 10.1039/c1cc11160d. PubMed DOI
Ion R., Stoian A.B., Dumitriu C., Grigorescu S., Mazare A., Cimpean A., Demetrescu I., Schmuki P. Nanochannels formed on TiZr alloy improve biological response. Acta Biomater. 2015;24:370–377. doi: 10.1016/j.actbio.2015.06.016. PubMed DOI
Ion R., Mazare A., Dumitriu C., Pirvu C., Schmuki P., Cimpean A. Nanochannelar Topography Positively Modulates Osteoblast Differentiation and Inhibits Osteoclastogenesis. Coatings. 2018;8:294. doi: 10.3390/coatings8090294. DOI
Hasanzadeh Kafshgari M., Kah D., Mazare A., Nguyen N.T., Distaso M., Peukert W., Goldmann W.H., Schmuki P., Fabry B. Anodic Titanium Dioxide Nanotubes for Magnetically Guided Therapeutic Delivery. Sci. Rep. 2019;9:13439. doi: 10.1038/s41598-019-49513-2. PubMed DOI PMC
Kafshgari M.H., Mazare A., Distaso M., Goldmann W.H., Peukert W., Fabry B., Schmuki P. Intracellular Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Appl. Mater. Interfaces. 2019;11:14980–14985. doi: 10.1021/acsami.9b01211. PubMed DOI
Silverwood R.K., Fairhurst P.G., Sjöström T., Welsh F., Sun Y., Li G., Yu B., Young P.S., Su B., Meek R.M.D., et al. Analysis of Osteoclastogenesis/Osteoblastogenesis on Nanotopographical Titania Surfaces. Adv. Healthc. Mater. 2016;5:947–955. doi: 10.1002/adhm.201500664. PubMed DOI
Jiang Z., Yu K., Feng Y., Zhang L., Yang G. An effective light activated TiO2 nanodot platform for gene delivery within cell sheets to enhance osseointegration. Chem. Eng. J. 2020;402:126170. doi: 10.1016/j.cej.2020.126170. DOI
Chen X., Fan H., Deng X., Wu L., Yi T., Gu L., Zhou C., Fan Y., Zhang X. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. Nanomaterials. 2018;8:960. doi: 10.3390/nano8110960. PubMed DOI PMC
Park J., Bauer S., Pittrof A., Killian M.S., Schmuki P., von der Mark K. Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes. Small. 2012;8:98–107. doi: 10.1002/smll.201100790. PubMed DOI
Bauer S., Schmuki P., von der Mark K., Park J. Engineering biocompatible implant surfaces. Part I: Materials and surfaces. Prog. Mater. Sci. 2012;58:261–326. doi: 10.1016/j.pmatsci.2012.09.001. DOI
Chen Z., Bachhuka A., Wei F., Wang X., Liu G., Vasilev K., Xiao Y. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. Nanoscale. 2017;9:18129–18152. doi: 10.1039/C7NR05913B. PubMed DOI
Thomsen P., Gretzer C. Macrophage interactions with modified material surfaces. Curr. Opin. Solid State Mater. Sci. 2001;5:163–176. doi: 10.1016/S1359-0286(01)00004-3. DOI
Refai A.K., Textor M., Brunette D.M., Waterfield J.D. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J. Biomed. Mater. Res. 2004;70A:194–205. doi: 10.1002/jbm.a.30075. PubMed DOI
Tan K.S., Qian L., Rosado R., Flood P.M., Cooper L.F. The role of titanium surface topography on J774A.1 macrophage inflammatory cytokines and nitric oxide production. Biomaterials. 2006;27:5170–5177. doi: 10.1016/j.biomaterials.2006.05.002. PubMed DOI
Bota P.C.S., Collie A.M.B., Puolakkainen P., Vernon R.B., Sage E.H., Ratner B.D., Stayton P.S. Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J. Biomed. Mater. Res. Part A. 2010;95A:649–657. doi: 10.1002/jbm.a.32893. PubMed DOI PMC
Barth K.A., Waterfield J.D., Brunette D.M. The effect of surface roughness on RAW 264.7 macrophage phenotype. J. Biomed. Mater. Res. Part A. 2013;101A:2679–2688. doi: 10.1002/jbm.a.34562. PubMed DOI
Christo S.N., Bachhuka A., Diener K.R., Mierczynska A., Hayball J.D., Vasilev K. The Role of Surface Nanotopography and Chemistry on Primary Neutrophil and Macrophage Cellular Responses. Adv. Healthc. Mater. 2016;5:956–965. doi: 10.1002/adhm.201500845. PubMed DOI
Wang J., Qian S., Liu X., Xu L., Miao X., Xu Z., Cao L., Wang H., Jiang X. M2 macrophages contribute to osteogenesis and angiogenesis on nanotubular TiO2 surfaces. J. Mater. Chem. B. 2017;5:3364–3376. doi: 10.1039/C6TB03364D. PubMed DOI
Shen X., Yu Y., Ma P., Luo Z., Hu Y., Li M., He Y., Zhang Y., Peng Z., Song G., et al. Titania nanotubes promote osteogenesis via mediating crosstalk between macrophages and MSCs under oxidative stress. Colloids Surf. B Biointerfaces. 2019;180:39–48. doi: 10.1016/j.colsurfb.2019.04.033. PubMed DOI
Yao S., Feng X., Li W., Wang L.N., Wang X. Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays. Front. Mater. Sci. 2017;11:318–327. doi: 10.1007/s11706-017-0402-z. DOI
Rajyalakashmi A., Ercan B., Balasubramanian K., Webster T.J. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features. Int. J. Nanomed. 2011;6:1765–1771. doi: 10.2147/IJN.S22763. PubMed DOI PMC
Chamberlain L.M., Brammer K.S., Johnston G.W., Chien S., Jin S. Macrophage Inflammatory Response to TiO2 Nanotube Surfaces. J. Biomater. Nanobiotechnol. 2011;2:293–300. doi: 10.4236/jbnb.2011.23036. DOI
Sun S.J., Yu W.Q., Zhang Y.L., Jiang X.Q., Zhang F.Q. Effects of TiO2 nanotube layers on RAW 264.7 macrophage behaviour and bone morphogenetic protein-2 expression. Cell Prolif. 2013;46:685–694. doi: 10.1111/cpr.12072. PubMed DOI PMC
Gao S., Lu R., Wang X., Chou J., Wang N., Huai X., Wang C., Zhao Y., Chen S. Immune response of macrophages on super-hydrophilic TiO2 nanotube arrays. J. Biomater. Appl. 2020;34:1239–1253. doi: 10.1177/0885328220903249. PubMed DOI
Ma Q.-L., Zhao L.-Z., Liu R.-R., Jin B.-Q., Song W., Wang Y., Zhang Y.-S., Chen L.-H., Zhang Y.-M. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials. 2014;35:9853–9867. doi: 10.1016/j.biomaterials.2014.08.025. PubMed DOI
Neacsu P., Mazare A., Cimpean A., Park J., Costache M., Schmuki P., Demetrescu I. Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. Int. J. Biochem. Cell Biol. 2014;55:187–195. doi: 10.1016/j.biocel.2014.09.006. PubMed DOI
Steeves A.J., Ho W., Munisso M.C., Lomboni D.J., Larrañaga E., Omelon S., Martínez E., Spinello D., Variola F. The implication of spatial statistics in human mesenchymal stem cell response to nanotubular architectures. Int. J. Nanomed. 2020;15:2151–2169. doi: 10.2147/IJN.S238280. PubMed DOI PMC
Neacsu P., Mazare A., Schmuki P., Cimpean A. Attenuation of the macrophage inflammatory activity by TiO2 nanotubes via inhibition of MAPK and NF-κB pathways. Int. J. Nanomed. 2015;10:6455–6467. doi: 10.2147/IJN.S92019. PubMed DOI PMC
Necula M.G., Mazare A., Ion R.N., Ozkan S., Park J., Schmuki P., Cimpean A. Lateral spacing of TiO2 nanotubes modulates osteoblast behavior. Materials. 2019;12:2956. doi: 10.3390/ma12182956. PubMed DOI PMC
Ozkan S., Nguyen N.T., Mazare A., Hahn R., Cerri I., Schmuki P. Fast growth of TiO2 nanotube arrays with controlled tube spacing based on a self-ordering process at two different scales. Electrochem. Commun. 2017;77:98–102. doi: 10.1016/j.elecom.2017.03.007. DOI
Nguyen N.T., Ozkan S., Hwang I., Mazare A., Schmuki P. TiO2 nanotubes with laterally spaced ordering enable optimized hierarchical structures with significantly enhanced photocatalytic H2 generation. Nanoscale. 2016;8:16868–16873. doi: 10.1039/C6NR06329B. PubMed DOI
Ozkan S., Cha G., Mazare A., Schmuki P. TiO2 nanotubes with different spacing, Fe2O3 decoration and their evaluation for Li-ion battery application. Nanotechnology. 2018;29:195402. doi: 10.1088/1361-6528/aab062. PubMed DOI
Ozkan S., Valle F., Mazare A., Hwang I., Taccardi N., Zazpe R., Macak J.M., Cerri I., Schmuki P. Optimized Polymer Electrolyte Membrane Fuel Cell Electrode Using TiO2 Nanotube Arrays with Well-Defined Spacing. ACS Appl. Nano Mater. 2020;3:4157–4170. doi: 10.1021/acsanm.0c00325. DOI
Ozkan S., Mazare A., Schmuki P. Critical parameters and factors in the formation of spaced TiO2 nanotubes by self-organizing anodization. Electrochim. Acta. 2018;268:435–447. doi: 10.1016/j.electacta.2018.02.120. DOI
Park J., Bauer S., Schmuki P., Von Der Mark K. Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett. 2009;9:3157–3164. doi: 10.1021/nl9013502. PubMed DOI
Chen Z., Klein T., Murray R.Z., Crawford R., Chang J., Wu C., Xiao Y. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater. Today. 2016;19:304–321. doi: 10.1016/j.mattod.2015.11.004. DOI
Kamath S., Bhattacharyya D., Padukudru C., Timmons R.B., Tang L. Surface chemistry influences implant-mediated host tissue responses. J. Biomed. Mater. Res. Part A. 2008;86A:617–626. doi: 10.1002/jbm.a.31649. PubMed DOI PMC
Mesure L., de Visscher G., Vranken I., Lebacq A., Flameng W. Gene expression study of monocytes/macrophages during early foreign body reaction and identification of potential precursors of myofibroblasts. PLoS ONE. 2010;5:e12949. doi: 10.1371/journal.pone.0012949. PubMed DOI PMC
Franz S., Rammelt S., Scharnweber D., Simon J.C. Immune responses to implants—A review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32:6692–6709. doi: 10.1016/j.biomaterials.2011.05.078. PubMed DOI
Hulander M., Lundgren A., Faxälv L., Lindahl T.L., Palmquist A., Berglin M., Elwing H. Gradients in surface nanotopography used to study platelet adhesion and activation. Colloids Surf. B Biointerfaces. 2013;110:261–269. doi: 10.1016/j.colsurfb.2013.04.010. PubMed DOI
Zhu G., Zhang T., Chen M., Yao K., Huang X., Zhang B., Li Y., Liu J., Wang Y., Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact. Mater. 2021;6:4110–4140. doi: 10.1016/j.bioactmat.2021.03.043. PubMed DOI PMC
Vogel V., Sheetz M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 2006;7:265–275. doi: 10.1038/nrm1890. PubMed DOI
Gittens R.A., McLachlan T., Olivares-Navarrete R., Cai Y., Berner S., Tannenbaum R., Schwartz Z., Sandhage K.H., Boyan B.D. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. 2011;32:3395–3403. doi: 10.1016/j.biomaterials.2011.01.029. PubMed DOI PMC
Chen S., Jones J.A., Xu Y., Low H.-Y., Anderson J.M., Leong K.W. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials. 2010;31:3479–3491. doi: 10.1016/j.biomaterials.2010.01.074. PubMed DOI PMC
Sridharan R., Cameron A.R., Kelly D.J., Kearney C.J., O’Brien F.J. Biomaterial based modulation of macrophage polarization: A review and suggested design principles. Mater. Today. 2015;18:313–325. doi: 10.1016/j.mattod.2015.01.019. DOI
McWhorter F.Y., Wang T., Nguyen P., Chung T., Liu W.F. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. USA. 2013;110:17253–17258. doi: 10.1073/pnas.1308887110. PubMed DOI PMC
Honma M., Ikebuchi Y., Kariya Y., Suzuki H. Regulatory Mechanisms of RANKL Presentation to Osteoclast Precursors. Curr. Osteoporos. Rep. 2014;12:115–120. doi: 10.1007/s11914-014-0189-0. PubMed DOI
Luu T.U., Gott S.C., Woo B.W.K., Rao M.P., Liu W.F. Micro- and Nanopatterned Topographical Cues for Regulating Macrophage Cell Shape and Phenotype. ACS Appl. Mater. Interfaces. 2015;7:28665–28672. doi: 10.1021/acsami.5b10589. PubMed DOI PMC
Ainslie K.M., Thakar R.G., Bernards D.A., Desai T.A. Inflammatory Response to Implanted Nanostructured Materials. In: Puleo D., Bizios R., editors. Biological Interactions on Materials Surfaces. Springer US; New York, NY, USA: 2009. pp. 355–371.
Vadiveloo P., Keramidaris E., Morrison W., Stewart A. Lipopolysaccharide-induced cell cycle arrest in macrophages occurs independently of nitric oxide synthase II induction. Biochim. Biophys. Acta Mol. Cell Res. 2001;1539:140–146. doi: 10.1016/S0167-4889(01)00102-1. PubMed DOI
Tan J., Zhao C., Wang Y., Li Y., Duan K., Wang J., Weng J., Feng B. Nano-topographic titanium modulates macrophage response in vitro and in an implant-associated rat infection model. RSC Adv. 2016;6:111919–111927. doi: 10.1039/C6RA22667A. DOI
Smith B.S., Capellato P., Kelley S., Gonzalez-Juarrero M., Popat K.C. Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. Biomater. Sci. 2013;1:322–332. doi: 10.1039/C2BM00079B. PubMed DOI
Zhu Y., Zheng T., Wen L.M., Li R., Zhang Y.B., Bi W.J., Feng X.J., Qi M.C. Osteogenic capability of strontium and icariin-loaded TiO2 nanotube coatings in vitro and in osteoporotic rats. J. Biomater. Appl. 2021;35:1119–1131. doi: 10.1177/0885328221997998. PubMed DOI
Yu D., Guo S., Yang D., Li B., Guo Z., Han Y. Interrod spacing dependent angiogenesis and osseointegration of Na2TiO3 nanorods-patterned arrays via immunoregulation. Chem. Eng. J. 2021;426:131187. doi: 10.1016/j.cej.2021.131187. DOI
Yu D., Guo S., Yu M., Liu W., Li X., Chen D., Li B., Guo Z., Han Y. Immunomodulation and osseointegration activities of Na2TiO3 nanorods-arrayed coatings doped with different Sr content. Bioact. Mater. 2022;10:323–334. doi: 10.1016/j.bioactmat.2021.08.033. PubMed DOI PMC
Kwiecień I., Polubiec-Kownacka M., Dziedzic D., Wołosz D., Rzepecki P., Domagała-Kulawik J. CD163 and CCR7 as markers for macrophage polarisation in lung cancer microenvironment. Cent. Eur. J. Immunol. 2019;44:395–402. doi: 10.5114/ceji.2019.92795. PubMed DOI PMC
Xia Z., Triffitt J.T. A review on macrophage responses to biomaterials. Biomed. Mater. 2006;1:R1–R9. doi: 10.1088/1748-6041/1/1/R01. PubMed DOI
Sheikh Z., Brooks P., Barzilay O., Fine N., Glogauer M. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials. 2015;8:5671–5701. doi: 10.3390/ma8095269. PubMed DOI PMC
Padmanabhan J., Kyriakides T.R. Nanomaterials, Inflammation, and Tissue Engineering. WIREs Nanomed. Nanobiotechnol. 2015;7:355–370. doi: 10.1002/wnan.1320. PubMed DOI PMC
Klopfleisch R. Macrophage reaction against biomaterials in the mouse model—Phenotypes, functions and markers. Acta Biomater. 2016;43:3–13. doi: 10.1016/j.actbio.2016.07.003. PubMed DOI
Miron R.J., Bosshardt D.D. OsteoMacs: Key players around bone biomaterials. Biomaterials. 2016;82:1–19. doi: 10.1016/j.biomaterials.2015.12.017. PubMed DOI
Hallab N.J., Jacobs J.J. Chemokines Associated with Pathologic Responses to Orthopedic Implant Debris. Front. Endocrinol. 2017;8:5. doi: 10.3389/fendo.2017.00005. PubMed DOI PMC
Anderson J.M., Rodriguez A., Chang D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC
Gibon E., Loi F., Córdova L.A., Pajarinen J., Lin T., Lu L., Nabeshima A., Yao Z., Goodman S.B. Aging Affects Bone Marrow Macrophage Polarization: Relevance to Bone Healing. Regen. Eng. Transl. Med. 2016;2:98–104. doi: 10.1007/s40883-016-0016-5. PubMed DOI PMC
Albrektsson T., Wennerberg A. On osseointegration in relation to implant surfaces. Clin. Implant Dent. Relat. Res. 2019;21:4–7. doi: 10.1111/cid.12742. PubMed DOI
Jones J.A., Chang D.T., Meyerson H., Colton E., Kwon I.K., Matsuda T., Anderson J.M. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J. Biomed. Mater. Res. Part A. 2007;83A:585–596. doi: 10.1002/jbm.a.31221. PubMed DOI
Mavrogenis A.F., Dimitriou R., Parvizi J., Babis G. Biology of implant osseointegration. Univ. Connect. Health Cent. 2011;103:e22–e25. PubMed
Williams D.F. On the nature of biomaterials. Biomaterials. 2009;30:5897–5909. doi: 10.1016/j.biomaterials.2009.07.027. PubMed DOI
Commins S.P., Borish L., Steinke J.W. Immunologic messenger molecules: Cytokines, interferons, and chemokines. J. Allergy Clin. Immunol. 2010;125:S53–S72. doi: 10.1016/j.jaci.2009.07.008. PubMed DOI
Schlundt C., El Khassawna T., Serra A., Dienelt A., Wendler S., Schell H., van Rooijen N., Radbruch A., Lucius R., Hartmann S., et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone. 2018;106:78–89. doi: 10.1016/j.bone.2015.10.019. PubMed DOI
Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front. Biosci. 2008;13:453. doi: 10.2741/2692. PubMed DOI
Claes L., Recknagel S., Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 2012;8:133–143. doi: 10.1038/nrrheum.2012.1. PubMed DOI
AI-Aql Z.S., Alagl A.S., Graves D.T., Gerstenfeld L.C., Einhorn T.A. Molecular Mechanisms Controlling Bone Formation during Fracture Healing and Distraction Osteogenesis. J. Dent. Res. 2008;87:107–118. doi: 10.1177/154405910808700215. PubMed DOI PMC
Prystaz K., Kaiser K., Kovtun A., Haffner-Luntzer M., Fischer V., Rapp A.E., Liedert A., Strauss G., Waetzig G.H., Rose-John S., et al. Distinct Effects of IL-6 Classic and Trans -Signaling in Bone Fracture Healing. Am. J. Pathol. 2018;188:474–490. doi: 10.1016/j.ajpath.2017.10.011. PubMed DOI
Fernando M.R., Reyes J.L., Iannuzzi J., Leung G., McKay D.M. The Pro-Inflammatory Cytokine, Interleukin-6, Enhances the Polarization of Alternatively Activated Macrophages. PLoS ONE. 2014;9:e94188. doi: 10.1371/journal.pone.0094188. PubMed DOI PMC
Wallace A., Cooney T.E., Englund R., Lubahn J.D. Effects of Interleukin-6 Ablation on Fracture Healing in Mice. J. Orthop. Res. 2011;29:1437–1442. doi: 10.1002/jor.21367. PubMed DOI
Glass G.E., Chan J.K., Freidin A., Feldmann M., Horwood N.J., Nanchahal J. TNF- promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc. Natl. Acad. Sci. USA. 2011;108:1585–1590. doi: 10.1073/pnas.1018501108. PubMed DOI PMC
Eming S.A., Hammerschmidt M., Krieg T., Roers A. Interrelation of immunity and tissue repair or regeneration. Semin. Cell Dev. Biol. 2009;20:517–527. doi: 10.1016/j.semcdb.2009.04.009. PubMed DOI
Wang M., Yuan Q., Xie L. Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells Int. 2018;2018:3057624. doi: 10.1155/2018/3057624. PubMed DOI PMC
Hamlet S., Alfarsi M., George R., Ivanovski S. The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression. Clin. Oral Implant. Res. 2012;23:584–590. doi: 10.1111/j.1600-0501.2011.02325.x. PubMed DOI
Yoshida H., Naito A., Inoue J.-I., Satoh M., Santee-Cooper S.M., Ware C.F., Togawa A., Nishikawa S., Nishikawa S.-I. Different Cytokines Induce Surface Lymphotoxin-αβ on IL-7 Receptor-α Cells that Differentially Engender Lymph Nodes and Peyer’s Patches. Immunity. 2002;17:823–833. doi: 10.1016/S1074-7613(02)00479-X. PubMed DOI
Abdi K. IL-12: The Role of p40 Versus p75. Scand. J. Immunol. 2002;56:1–11. doi: 10.1046/j.1365-3083.2002.01101.x. PubMed DOI
Ono T., Okamoto K., Nakashima T., Nitta T., Hori S., Iwakura Y., Takayanagi H. IL-17-producing γδ T cells enhance bone regeneration. Nat. Commun. 2016;7:10928. doi: 10.1038/ncomms10928. PubMed DOI PMC
Croes M., Kruyt M.C., Groen W.M., van Dorenmalen K.M.A., Dhert W.J.A., Öner F.C., Alblas J. Interleukin 17 enhances bone morphogenetic protein-2-induced ectopic bone formation. Sci. Rep. 2018;8:7269. doi: 10.1038/s41598-018-25564-9. PubMed DOI PMC
Liao C., Zhang C., Jin L., Yang Y. IL-17 alters the mesenchymal stem cell niche towards osteogenesis in cooperation with osteocytes. J. Cell. Physiol. 2020;235:4466–4480. doi: 10.1002/jcp.29323. PubMed DOI PMC
Grütz G. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J. Leukoc. Biol. 2005;77:3–15. doi: 10.1189/jlb.0904484. PubMed DOI
Fiorentino D.F., Zlotnik A., Mosmann T.R., Howard M., O’Garra A. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 1991;147:3815–3822. PubMed
Takakura R., Kiyohara T., Murayama Y., Miyazaki Y., Miyoshi Y., Shinomura Y., Matsuzawa Y. Enhanced macrophage responsiveness to lipopolysaccharide and CD40 stimulation in a murine model of inflammatory bowel disease: IL-10-deficient mice. Inflamm. Res. 2002;51:409–415. doi: 10.1007/PL00000322. PubMed DOI
Tao J.-Y., Zheng G.-H., Zhao L., Wu J.-G., Zhang X.-Y., Zhang S.-L., Huang Z.-J., Xiong F.-L., Li C.-M. Anti-inflammatory effects of ethyl acetate fraction from Melilotus suaveolens Ledeb on LPS-stimulated RAW 264.7 cells. J. Ethnopharmacol. 2009;123:97–105. doi: 10.1016/j.jep.2009.02.024. PubMed DOI
Takito J., Inoue S., Nakamura M. The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone. Int. J. Mol. Sci. 2018;19:984. doi: 10.3390/ijms19040984. PubMed DOI PMC
Lai M., Jin Z., Yang X., Wang H., Xu K. The controlled release of simvastatin from TiO2 nanotubes to promote osteoblast differentiation and inhibit osteoclast resorption. Appl. Surf. Sci. 2017;396:1741–1751. doi: 10.1016/j.apsusc.2016.11.228. DOI
Tesler A.B., Prado L.H., Khusniyarov M.M., Thievessen I., Mazare A., Fischer L., Virtanen S., Goldmann W.H., Schmuki P. A One-Pot Universal Approach to Fabricate Lubricant-Infused Slippery Surfaces on Solid Substrates. Adv. Funct. Mater. 2021;31:2101090. doi: 10.1002/adfm.202101090. DOI
Dascălu C.A., Maidaniuc A., Pandele A.M., Voicu S.I., Machedon-Pisu T., Stan G.E., Cîmpean A., Mitran V., Antoniac I.V., Miculescu F. Synthesis and characterization of biocompatible polymer-ceramic film structures as favorable interface in guided bone regeneration. Appl. Surf. Sci. 2019;494:335–352. doi: 10.1016/j.apsusc.2019.07.098. DOI
Negrescu A.-M., Necula M.-G., Gebaur A., Golgovici F., Nica C., Curti F., Iovu H., Costache M., Cimpean A. In Vitro Macrophage Immunomodulation by Poly(ε-caprolactone) Based-Coated AZ31 Mg Alloy. Int. J. Mol. Sci. 2021;22:909. doi: 10.3390/ijms22020909. PubMed DOI PMC
Lateral Spacing of TiO2 Nanotube Coatings Modulates In Vivo Early New Bone Formation