Macrophage-like Cells Are Responsive to Titania Nanotube Intertube Spacing-An In Vitro Study

. 2022 Mar 24 ; 23 (7) : . [epub] 20220324

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35408918

Grantová podpora
PCE 55/2017 Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

With the introduction of a new interdisciplinary field, osteoimmunology, today, it is well acknowledged that biomaterial-induced inflammation is modulated by immune cells, primarily macrophages, and can be controlled by nanotopographical cues. Recent studies have investigated the effect of surface properties in modulating the immune reaction, and literature data indicate that various surface cues can dictate both the immune response and bone tissue repair. In this context, the purpose of the present study was to investigate the effects of titanium dioxide nanotube (TNT) interspacing on the response of the macrophage-like cell line RAW 264.7. The cells were maintained in contact with the surfaces of flat titanium (Ti) and anodic TNTs with an intertube spacing of 20 nm (TNT20) and 80 nm (TNT80), under standard or pro-inflammatory conditions. The results revealed that nanotube interspacing can influence macrophage response in terms of cell survival and proliferation, cellular morphology and polarization, cytokine/chemokine expression, and foreign body reaction. While the nanostructured topography did not tune the macrophages' differentiation into osteoclasts, this behavior was significantly reduced as compared to flat Ti surface. Overall, this study provides a new insight into how nanotubes' morphological features, particularly intertube spacing, could affect macrophage behavior.

Zobrazit více v PubMed

Tan A.W., Pingguan-Murphy B., Ahmad R., Akbar S.A. Review of titania nanotubes: Fabrication and cellular response. Ceram. Int. 2012;38:4421–4435. doi: 10.1016/j.ceramint.2012.03.002. DOI

Kulkarni M., Mazare A., Gongadze E., Perutkova Š., Kralj-Iglič V., Milošev I., Schmuki P., Iglič A., Mozetič M. Titanium nanostructures for biomedical applications. Nanotechnology. 2015;26:062002. doi: 10.1088/0957-4484/26/6/062002. PubMed DOI

Wang W., Khoon C. Titanium Alloys in Orthopaedics. In: Sieniawski J., Ziaja W., editors. Titanium Alloys—Advances in Properties Control. InTech; London, UK: 2013.

Verissimo N.C., Chung S., Webster T.J. Surface Coating and Modification of Metallic Biomaterials. Elsevier; Amsterdam, The Netherlands: 2015. New nanoscale surface modifications of metallic biomaterials; pp. 249–273.

Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009;54:397–425. doi: 10.1016/j.pmatsci.2008.06.004. DOI

Hotchkiss K.M., Reddy G.B., Hyzy S.L., Schwartz Z., Boyan B.D., Olivares-Navarrete R. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016;31:425–434. doi: 10.1016/j.actbio.2015.12.003. PubMed DOI PMC

Yamaguchi S., Spriano S., Cazzola M. Nanostructured Biomaterials for Regenerative Medicine. Elsevier; Amsterdam, The Netherlands: 2020. Fast and effective osseointegration of dental, spinal, and orthopedic implants through tailored chemistry of inorganic surfaces; pp. 337–377.

Wang J., Meng F., Song W., Jin J., Ma Q., Fei D., Fang L., Chen L., Wang Q., Zhang Y. Nanostructured titanium regulates osseointegration via influencing macrophage polarization in the osteogenic environment. Int. J. Nanomed. 2018;13:4029–4043. doi: 10.2147/IJN.S163956. PubMed DOI PMC

Lee K., Mazare A., Schmuki P. One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 2014;114:9385–9454. doi: 10.1021/cr500061m. PubMed DOI

Park J., Cimpean A., Tesler A.B., Mazare A. Anodic TiO2 Nanotubes: Tailoring Osteoinduction via Drug Delivery. Nanomaterials. 2021;11:2359. doi: 10.3390/nano11092359. PubMed DOI PMC

Guo T., Oztug N.A.K., Han P., Ivanovski S., Gulati K. Untwining the topography-chemistry interdependence to optimize the bioactivity of nano-engineered titanium implants. Appl. Surf. Sci. 2021;570:151083. doi: 10.1016/j.apsusc.2021.151083. DOI

Ion R., Necula M.G., Mazare A., Mitran V., Neacsu P., Schmuki P., Cimpean A. Drug Delivery Systems Based on Titania Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants. Curr. Med. Chem. 2020;27:854–902. doi: 10.2174/0929867326666190726123229. PubMed DOI

Özkan S., Nguyen N.T., Mazare A., Schmuki P. Controlled spacing of self-organized anodic TiO2 nanotubes. Electrochem. Commun. 2016;69:76–79. doi: 10.1016/j.elecom.2016.06.004. DOI

Wei W., Berger S., Hauser C., Meyer K., Yang M., Schmuki P. Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents. Electrochem. Commun. 2010;12:1184–1186. doi: 10.1016/j.elecom.2010.06.014. DOI

Liu N., Lee K., Schmuki P. Small diameter TiO2 nanotubes vs. nanopores in dye sensitized solar cells. Electrochem. Commun. 2012;15:1–4. doi: 10.1016/j.elecom.2011.11.003. DOI

Kulkarni M., Mazare A., Schmuki P., Iglic A. Influence of anodization parameters on morphology of TiO2 nanostructured surfaces. Adv. Mater. Lett. 2016;7:23–28. doi: 10.5185/amlett.2016.6156. DOI

Kim D., Lee K., Roy P., Birajdar B.I., Spiecker E., Schmuki P. Formation of a non-thickness-limited titanium dioxide mesosponge and its use in dye-sensitized solar cells. Angew. Chem. Int. Ed. 2009;48:9326–9329. doi: 10.1002/anie.200904455. PubMed DOI

Lee K., Kim D., Schmuki P. Highly self-ordered nanochannel TiO2 structures by anodization in a hot glycerol electrolyte. Chem. Commun. 2011;47:5789–5791. doi: 10.1039/c1cc11160d. PubMed DOI

Ion R., Stoian A.B., Dumitriu C., Grigorescu S., Mazare A., Cimpean A., Demetrescu I., Schmuki P. Nanochannels formed on TiZr alloy improve biological response. Acta Biomater. 2015;24:370–377. doi: 10.1016/j.actbio.2015.06.016. PubMed DOI

Ion R., Mazare A., Dumitriu C., Pirvu C., Schmuki P., Cimpean A. Nanochannelar Topography Positively Modulates Osteoblast Differentiation and Inhibits Osteoclastogenesis. Coatings. 2018;8:294. doi: 10.3390/coatings8090294. DOI

Hasanzadeh Kafshgari M., Kah D., Mazare A., Nguyen N.T., Distaso M., Peukert W., Goldmann W.H., Schmuki P., Fabry B. Anodic Titanium Dioxide Nanotubes for Magnetically Guided Therapeutic Delivery. Sci. Rep. 2019;9:13439. doi: 10.1038/s41598-019-49513-2. PubMed DOI PMC

Kafshgari M.H., Mazare A., Distaso M., Goldmann W.H., Peukert W., Fabry B., Schmuki P. Intracellular Drug Delivery with Anodic Titanium Dioxide Nanotubes and Nanocylinders. ACS Appl. Mater. Interfaces. 2019;11:14980–14985. doi: 10.1021/acsami.9b01211. PubMed DOI

Silverwood R.K., Fairhurst P.G., Sjöström T., Welsh F., Sun Y., Li G., Yu B., Young P.S., Su B., Meek R.M.D., et al. Analysis of Osteoclastogenesis/Osteoblastogenesis on Nanotopographical Titania Surfaces. Adv. Healthc. Mater. 2016;5:947–955. doi: 10.1002/adhm.201500664. PubMed DOI

Jiang Z., Yu K., Feng Y., Zhang L., Yang G. An effective light activated TiO2 nanodot platform for gene delivery within cell sheets to enhance osseointegration. Chem. Eng. J. 2020;402:126170. doi: 10.1016/j.cej.2020.126170. DOI

Chen X., Fan H., Deng X., Wu L., Yi T., Gu L., Zhou C., Fan Y., Zhang X. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. Nanomaterials. 2018;8:960. doi: 10.3390/nano8110960. PubMed DOI PMC

Park J., Bauer S., Pittrof A., Killian M.S., Schmuki P., von der Mark K. Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes. Small. 2012;8:98–107. doi: 10.1002/smll.201100790. PubMed DOI

Bauer S., Schmuki P., von der Mark K., Park J. Engineering biocompatible implant surfaces. Part I: Materials and surfaces. Prog. Mater. Sci. 2012;58:261–326. doi: 10.1016/j.pmatsci.2012.09.001. DOI

Chen Z., Bachhuka A., Wei F., Wang X., Liu G., Vasilev K., Xiao Y. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. Nanoscale. 2017;9:18129–18152. doi: 10.1039/C7NR05913B. PubMed DOI

Thomsen P., Gretzer C. Macrophage interactions with modified material surfaces. Curr. Opin. Solid State Mater. Sci. 2001;5:163–176. doi: 10.1016/S1359-0286(01)00004-3. DOI

Refai A.K., Textor M., Brunette D.M., Waterfield J.D. Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J. Biomed. Mater. Res. 2004;70A:194–205. doi: 10.1002/jbm.a.30075. PubMed DOI

Tan K.S., Qian L., Rosado R., Flood P.M., Cooper L.F. The role of titanium surface topography on J774A.1 macrophage inflammatory cytokines and nitric oxide production. Biomaterials. 2006;27:5170–5177. doi: 10.1016/j.biomaterials.2006.05.002. PubMed DOI

Bota P.C.S., Collie A.M.B., Puolakkainen P., Vernon R.B., Sage E.H., Ratner B.D., Stayton P.S. Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J. Biomed. Mater. Res. Part A. 2010;95A:649–657. doi: 10.1002/jbm.a.32893. PubMed DOI PMC

Barth K.A., Waterfield J.D., Brunette D.M. The effect of surface roughness on RAW 264.7 macrophage phenotype. J. Biomed. Mater. Res. Part A. 2013;101A:2679–2688. doi: 10.1002/jbm.a.34562. PubMed DOI

Christo S.N., Bachhuka A., Diener K.R., Mierczynska A., Hayball J.D., Vasilev K. The Role of Surface Nanotopography and Chemistry on Primary Neutrophil and Macrophage Cellular Responses. Adv. Healthc. Mater. 2016;5:956–965. doi: 10.1002/adhm.201500845. PubMed DOI

Wang J., Qian S., Liu X., Xu L., Miao X., Xu Z., Cao L., Wang H., Jiang X. M2 macrophages contribute to osteogenesis and angiogenesis on nanotubular TiO2 surfaces. J. Mater. Chem. B. 2017;5:3364–3376. doi: 10.1039/C6TB03364D. PubMed DOI

Shen X., Yu Y., Ma P., Luo Z., Hu Y., Li M., He Y., Zhang Y., Peng Z., Song G., et al. Titania nanotubes promote osteogenesis via mediating crosstalk between macrophages and MSCs under oxidative stress. Colloids Surf. B Biointerfaces. 2019;180:39–48. doi: 10.1016/j.colsurfb.2019.04.033. PubMed DOI

Yao S., Feng X., Li W., Wang L.N., Wang X. Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays. Front. Mater. Sci. 2017;11:318–327. doi: 10.1007/s11706-017-0402-z. DOI

Rajyalakashmi A., Ercan B., Balasubramanian K., Webster T.J. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features. Int. J. Nanomed. 2011;6:1765–1771. doi: 10.2147/IJN.S22763. PubMed DOI PMC

Chamberlain L.M., Brammer K.S., Johnston G.W., Chien S., Jin S. Macrophage Inflammatory Response to TiO2 Nanotube Surfaces. J. Biomater. Nanobiotechnol. 2011;2:293–300. doi: 10.4236/jbnb.2011.23036. DOI

Sun S.J., Yu W.Q., Zhang Y.L., Jiang X.Q., Zhang F.Q. Effects of TiO2 nanotube layers on RAW 264.7 macrophage behaviour and bone morphogenetic protein-2 expression. Cell Prolif. 2013;46:685–694. doi: 10.1111/cpr.12072. PubMed DOI PMC

Gao S., Lu R., Wang X., Chou J., Wang N., Huai X., Wang C., Zhao Y., Chen S. Immune response of macrophages on super-hydrophilic TiO2 nanotube arrays. J. Biomater. Appl. 2020;34:1239–1253. doi: 10.1177/0885328220903249. PubMed DOI

Ma Q.-L., Zhao L.-Z., Liu R.-R., Jin B.-Q., Song W., Wang Y., Zhang Y.-S., Chen L.-H., Zhang Y.-M. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials. 2014;35:9853–9867. doi: 10.1016/j.biomaterials.2014.08.025. PubMed DOI

Neacsu P., Mazare A., Cimpean A., Park J., Costache M., Schmuki P., Demetrescu I. Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface. Int. J. Biochem. Cell Biol. 2014;55:187–195. doi: 10.1016/j.biocel.2014.09.006. PubMed DOI

Steeves A.J., Ho W., Munisso M.C., Lomboni D.J., Larrañaga E., Omelon S., Martínez E., Spinello D., Variola F. The implication of spatial statistics in human mesenchymal stem cell response to nanotubular architectures. Int. J. Nanomed. 2020;15:2151–2169. doi: 10.2147/IJN.S238280. PubMed DOI PMC

Neacsu P., Mazare A., Schmuki P., Cimpean A. Attenuation of the macrophage inflammatory activity by TiO2 nanotubes via inhibition of MAPK and NF-κB pathways. Int. J. Nanomed. 2015;10:6455–6467. doi: 10.2147/IJN.S92019. PubMed DOI PMC

Necula M.G., Mazare A., Ion R.N., Ozkan S., Park J., Schmuki P., Cimpean A. Lateral spacing of TiO2 nanotubes modulates osteoblast behavior. Materials. 2019;12:2956. doi: 10.3390/ma12182956. PubMed DOI PMC

Ozkan S., Nguyen N.T., Mazare A., Hahn R., Cerri I., Schmuki P. Fast growth of TiO2 nanotube arrays with controlled tube spacing based on a self-ordering process at two different scales. Electrochem. Commun. 2017;77:98–102. doi: 10.1016/j.elecom.2017.03.007. DOI

Nguyen N.T., Ozkan S., Hwang I., Mazare A., Schmuki P. TiO2 nanotubes with laterally spaced ordering enable optimized hierarchical structures with significantly enhanced photocatalytic H2 generation. Nanoscale. 2016;8:16868–16873. doi: 10.1039/C6NR06329B. PubMed DOI

Ozkan S., Cha G., Mazare A., Schmuki P. TiO2 nanotubes with different spacing, Fe2O3 decoration and their evaluation for Li-ion battery application. Nanotechnology. 2018;29:195402. doi: 10.1088/1361-6528/aab062. PubMed DOI

Ozkan S., Valle F., Mazare A., Hwang I., Taccardi N., Zazpe R., Macak J.M., Cerri I., Schmuki P. Optimized Polymer Electrolyte Membrane Fuel Cell Electrode Using TiO2 Nanotube Arrays with Well-Defined Spacing. ACS Appl. Nano Mater. 2020;3:4157–4170. doi: 10.1021/acsanm.0c00325. DOI

Ozkan S., Mazare A., Schmuki P. Critical parameters and factors in the formation of spaced TiO2 nanotubes by self-organizing anodization. Electrochim. Acta. 2018;268:435–447. doi: 10.1016/j.electacta.2018.02.120. DOI

Park J., Bauer S., Schmuki P., Von Der Mark K. Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett. 2009;9:3157–3164. doi: 10.1021/nl9013502. PubMed DOI

Chen Z., Klein T., Murray R.Z., Crawford R., Chang J., Wu C., Xiao Y. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater. Today. 2016;19:304–321. doi: 10.1016/j.mattod.2015.11.004. DOI

Kamath S., Bhattacharyya D., Padukudru C., Timmons R.B., Tang L. Surface chemistry influences implant-mediated host tissue responses. J. Biomed. Mater. Res. Part A. 2008;86A:617–626. doi: 10.1002/jbm.a.31649. PubMed DOI PMC

Mesure L., de Visscher G., Vranken I., Lebacq A., Flameng W. Gene expression study of monocytes/macrophages during early foreign body reaction and identification of potential precursors of myofibroblasts. PLoS ONE. 2010;5:e12949. doi: 10.1371/journal.pone.0012949. PubMed DOI PMC

Franz S., Rammelt S., Scharnweber D., Simon J.C. Immune responses to implants—A review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32:6692–6709. doi: 10.1016/j.biomaterials.2011.05.078. PubMed DOI

Hulander M., Lundgren A., Faxälv L., Lindahl T.L., Palmquist A., Berglin M., Elwing H. Gradients in surface nanotopography used to study platelet adhesion and activation. Colloids Surf. B Biointerfaces. 2013;110:261–269. doi: 10.1016/j.colsurfb.2013.04.010. PubMed DOI

Zhu G., Zhang T., Chen M., Yao K., Huang X., Zhang B., Li Y., Liu J., Wang Y., Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact. Mater. 2021;6:4110–4140. doi: 10.1016/j.bioactmat.2021.03.043. PubMed DOI PMC

Vogel V., Sheetz M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 2006;7:265–275. doi: 10.1038/nrm1890. PubMed DOI

Gittens R.A., McLachlan T., Olivares-Navarrete R., Cai Y., Berner S., Tannenbaum R., Schwartz Z., Sandhage K.H., Boyan B.D. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. 2011;32:3395–3403. doi: 10.1016/j.biomaterials.2011.01.029. PubMed DOI PMC

Chen S., Jones J.A., Xu Y., Low H.-Y., Anderson J.M., Leong K.W. Characterization of topographical effects on macrophage behavior in a foreign body response model. Biomaterials. 2010;31:3479–3491. doi: 10.1016/j.biomaterials.2010.01.074. PubMed DOI PMC

Sridharan R., Cameron A.R., Kelly D.J., Kearney C.J., O’Brien F.J. Biomaterial based modulation of macrophage polarization: A review and suggested design principles. Mater. Today. 2015;18:313–325. doi: 10.1016/j.mattod.2015.01.019. DOI

McWhorter F.Y., Wang T., Nguyen P., Chung T., Liu W.F. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. USA. 2013;110:17253–17258. doi: 10.1073/pnas.1308887110. PubMed DOI PMC

Honma M., Ikebuchi Y., Kariya Y., Suzuki H. Regulatory Mechanisms of RANKL Presentation to Osteoclast Precursors. Curr. Osteoporos. Rep. 2014;12:115–120. doi: 10.1007/s11914-014-0189-0. PubMed DOI

Luu T.U., Gott S.C., Woo B.W.K., Rao M.P., Liu W.F. Micro- and Nanopatterned Topographical Cues for Regulating Macrophage Cell Shape and Phenotype. ACS Appl. Mater. Interfaces. 2015;7:28665–28672. doi: 10.1021/acsami.5b10589. PubMed DOI PMC

Ainslie K.M., Thakar R.G., Bernards D.A., Desai T.A. Inflammatory Response to Implanted Nanostructured Materials. In: Puleo D., Bizios R., editors. Biological Interactions on Materials Surfaces. Springer US; New York, NY, USA: 2009. pp. 355–371.

Vadiveloo P., Keramidaris E., Morrison W., Stewart A. Lipopolysaccharide-induced cell cycle arrest in macrophages occurs independently of nitric oxide synthase II induction. Biochim. Biophys. Acta Mol. Cell Res. 2001;1539:140–146. doi: 10.1016/S0167-4889(01)00102-1. PubMed DOI

Tan J., Zhao C., Wang Y., Li Y., Duan K., Wang J., Weng J., Feng B. Nano-topographic titanium modulates macrophage response in vitro and in an implant-associated rat infection model. RSC Adv. 2016;6:111919–111927. doi: 10.1039/C6RA22667A. DOI

Smith B.S., Capellato P., Kelley S., Gonzalez-Juarrero M., Popat K.C. Reduced in vitro immune response on titania nanotube arrays compared to titanium surface. Biomater. Sci. 2013;1:322–332. doi: 10.1039/C2BM00079B. PubMed DOI

Zhu Y., Zheng T., Wen L.M., Li R., Zhang Y.B., Bi W.J., Feng X.J., Qi M.C. Osteogenic capability of strontium and icariin-loaded TiO2 nanotube coatings in vitro and in osteoporotic rats. J. Biomater. Appl. 2021;35:1119–1131. doi: 10.1177/0885328221997998. PubMed DOI

Yu D., Guo S., Yang D., Li B., Guo Z., Han Y. Interrod spacing dependent angiogenesis and osseointegration of Na2TiO3 nanorods-patterned arrays via immunoregulation. Chem. Eng. J. 2021;426:131187. doi: 10.1016/j.cej.2021.131187. DOI

Yu D., Guo S., Yu M., Liu W., Li X., Chen D., Li B., Guo Z., Han Y. Immunomodulation and osseointegration activities of Na2TiO3 nanorods-arrayed coatings doped with different Sr content. Bioact. Mater. 2022;10:323–334. doi: 10.1016/j.bioactmat.2021.08.033. PubMed DOI PMC

Kwiecień I., Polubiec-Kownacka M., Dziedzic D., Wołosz D., Rzepecki P., Domagała-Kulawik J. CD163 and CCR7 as markers for macrophage polarisation in lung cancer microenvironment. Cent. Eur. J. Immunol. 2019;44:395–402. doi: 10.5114/ceji.2019.92795. PubMed DOI PMC

Xia Z., Triffitt J.T. A review on macrophage responses to biomaterials. Biomed. Mater. 2006;1:R1–R9. doi: 10.1088/1748-6041/1/1/R01. PubMed DOI

Sheikh Z., Brooks P., Barzilay O., Fine N., Glogauer M. Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials. Materials. 2015;8:5671–5701. doi: 10.3390/ma8095269. PubMed DOI PMC

Padmanabhan J., Kyriakides T.R. Nanomaterials, Inflammation, and Tissue Engineering. WIREs Nanomed. Nanobiotechnol. 2015;7:355–370. doi: 10.1002/wnan.1320. PubMed DOI PMC

Klopfleisch R. Macrophage reaction against biomaterials in the mouse model—Phenotypes, functions and markers. Acta Biomater. 2016;43:3–13. doi: 10.1016/j.actbio.2016.07.003. PubMed DOI

Miron R.J., Bosshardt D.D. OsteoMacs: Key players around bone biomaterials. Biomaterials. 2016;82:1–19. doi: 10.1016/j.biomaterials.2015.12.017. PubMed DOI

Hallab N.J., Jacobs J.J. Chemokines Associated with Pathologic Responses to Orthopedic Implant Debris. Front. Endocrinol. 2017;8:5. doi: 10.3389/fendo.2017.00005. PubMed DOI PMC

Anderson J.M., Rodriguez A., Chang D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC

Gibon E., Loi F., Córdova L.A., Pajarinen J., Lin T., Lu L., Nabeshima A., Yao Z., Goodman S.B. Aging Affects Bone Marrow Macrophage Polarization: Relevance to Bone Healing. Regen. Eng. Transl. Med. 2016;2:98–104. doi: 10.1007/s40883-016-0016-5. PubMed DOI PMC

Albrektsson T., Wennerberg A. On osseointegration in relation to implant surfaces. Clin. Implant Dent. Relat. Res. 2019;21:4–7. doi: 10.1111/cid.12742. PubMed DOI

Jones J.A., Chang D.T., Meyerson H., Colton E., Kwon I.K., Matsuda T., Anderson J.M. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J. Biomed. Mater. Res. Part A. 2007;83A:585–596. doi: 10.1002/jbm.a.31221. PubMed DOI

Mavrogenis A.F., Dimitriou R., Parvizi J., Babis G. Biology of implant osseointegration. Univ. Connect. Health Cent. 2011;103:e22–e25. PubMed

Williams D.F. On the nature of biomaterials. Biomaterials. 2009;30:5897–5909. doi: 10.1016/j.biomaterials.2009.07.027. PubMed DOI

Commins S.P., Borish L., Steinke J.W. Immunologic messenger molecules: Cytokines, interferons, and chemokines. J. Allergy Clin. Immunol. 2010;125:S53–S72. doi: 10.1016/j.jaci.2009.07.008. PubMed DOI

Schlundt C., El Khassawna T., Serra A., Dienelt A., Wendler S., Schell H., van Rooijen N., Radbruch A., Lucius R., Hartmann S., et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone. 2018;106:78–89. doi: 10.1016/j.bone.2015.10.019. PubMed DOI

Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front. Biosci. 2008;13:453. doi: 10.2741/2692. PubMed DOI

Claes L., Recknagel S., Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 2012;8:133–143. doi: 10.1038/nrrheum.2012.1. PubMed DOI

AI-Aql Z.S., Alagl A.S., Graves D.T., Gerstenfeld L.C., Einhorn T.A. Molecular Mechanisms Controlling Bone Formation during Fracture Healing and Distraction Osteogenesis. J. Dent. Res. 2008;87:107–118. doi: 10.1177/154405910808700215. PubMed DOI PMC

Prystaz K., Kaiser K., Kovtun A., Haffner-Luntzer M., Fischer V., Rapp A.E., Liedert A., Strauss G., Waetzig G.H., Rose-John S., et al. Distinct Effects of IL-6 Classic and Trans -Signaling in Bone Fracture Healing. Am. J. Pathol. 2018;188:474–490. doi: 10.1016/j.ajpath.2017.10.011. PubMed DOI

Fernando M.R., Reyes J.L., Iannuzzi J., Leung G., McKay D.M. The Pro-Inflammatory Cytokine, Interleukin-6, Enhances the Polarization of Alternatively Activated Macrophages. PLoS ONE. 2014;9:e94188. doi: 10.1371/journal.pone.0094188. PubMed DOI PMC

Wallace A., Cooney T.E., Englund R., Lubahn J.D. Effects of Interleukin-6 Ablation on Fracture Healing in Mice. J. Orthop. Res. 2011;29:1437–1442. doi: 10.1002/jor.21367. PubMed DOI

Glass G.E., Chan J.K., Freidin A., Feldmann M., Horwood N.J., Nanchahal J. TNF- promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc. Natl. Acad. Sci. USA. 2011;108:1585–1590. doi: 10.1073/pnas.1018501108. PubMed DOI PMC

Eming S.A., Hammerschmidt M., Krieg T., Roers A. Interrelation of immunity and tissue repair or regeneration. Semin. Cell Dev. Biol. 2009;20:517–527. doi: 10.1016/j.semcdb.2009.04.009. PubMed DOI

Wang M., Yuan Q., Xie L. Mesenchymal Stem Cell-Based Immunomodulation: Properties and Clinical Application. Stem Cells Int. 2018;2018:3057624. doi: 10.1155/2018/3057624. PubMed DOI PMC

Hamlet S., Alfarsi M., George R., Ivanovski S. The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression. Clin. Oral Implant. Res. 2012;23:584–590. doi: 10.1111/j.1600-0501.2011.02325.x. PubMed DOI

Yoshida H., Naito A., Inoue J.-I., Satoh M., Santee-Cooper S.M., Ware C.F., Togawa A., Nishikawa S., Nishikawa S.-I. Different Cytokines Induce Surface Lymphotoxin-αβ on IL-7 Receptor-α Cells that Differentially Engender Lymph Nodes and Peyer’s Patches. Immunity. 2002;17:823–833. doi: 10.1016/S1074-7613(02)00479-X. PubMed DOI

Abdi K. IL-12: The Role of p40 Versus p75. Scand. J. Immunol. 2002;56:1–11. doi: 10.1046/j.1365-3083.2002.01101.x. PubMed DOI

Ono T., Okamoto K., Nakashima T., Nitta T., Hori S., Iwakura Y., Takayanagi H. IL-17-producing γδ T cells enhance bone regeneration. Nat. Commun. 2016;7:10928. doi: 10.1038/ncomms10928. PubMed DOI PMC

Croes M., Kruyt M.C., Groen W.M., van Dorenmalen K.M.A., Dhert W.J.A., Öner F.C., Alblas J. Interleukin 17 enhances bone morphogenetic protein-2-induced ectopic bone formation. Sci. Rep. 2018;8:7269. doi: 10.1038/s41598-018-25564-9. PubMed DOI PMC

Liao C., Zhang C., Jin L., Yang Y. IL-17 alters the mesenchymal stem cell niche towards osteogenesis in cooperation with osteocytes. J. Cell. Physiol. 2020;235:4466–4480. doi: 10.1002/jcp.29323. PubMed DOI PMC

Grütz G. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J. Leukoc. Biol. 2005;77:3–15. doi: 10.1189/jlb.0904484. PubMed DOI

Fiorentino D.F., Zlotnik A., Mosmann T.R., Howard M., O’Garra A. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 1991;147:3815–3822. PubMed

Takakura R., Kiyohara T., Murayama Y., Miyazaki Y., Miyoshi Y., Shinomura Y., Matsuzawa Y. Enhanced macrophage responsiveness to lipopolysaccharide and CD40 stimulation in a murine model of inflammatory bowel disease: IL-10-deficient mice. Inflamm. Res. 2002;51:409–415. doi: 10.1007/PL00000322. PubMed DOI

Tao J.-Y., Zheng G.-H., Zhao L., Wu J.-G., Zhang X.-Y., Zhang S.-L., Huang Z.-J., Xiong F.-L., Li C.-M. Anti-inflammatory effects of ethyl acetate fraction from Melilotus suaveolens Ledeb on LPS-stimulated RAW 264.7 cells. J. Ethnopharmacol. 2009;123:97–105. doi: 10.1016/j.jep.2009.02.024. PubMed DOI

Takito J., Inoue S., Nakamura M. The Sealing Zone in Osteoclasts: A Self-Organized Structure on the Bone. Int. J. Mol. Sci. 2018;19:984. doi: 10.3390/ijms19040984. PubMed DOI PMC

Lai M., Jin Z., Yang X., Wang H., Xu K. The controlled release of simvastatin from TiO2 nanotubes to promote osteoblast differentiation and inhibit osteoclast resorption. Appl. Surf. Sci. 2017;396:1741–1751. doi: 10.1016/j.apsusc.2016.11.228. DOI

Tesler A.B., Prado L.H., Khusniyarov M.M., Thievessen I., Mazare A., Fischer L., Virtanen S., Goldmann W.H., Schmuki P. A One-Pot Universal Approach to Fabricate Lubricant-Infused Slippery Surfaces on Solid Substrates. Adv. Funct. Mater. 2021;31:2101090. doi: 10.1002/adfm.202101090. DOI

Dascălu C.A., Maidaniuc A., Pandele A.M., Voicu S.I., Machedon-Pisu T., Stan G.E., Cîmpean A., Mitran V., Antoniac I.V., Miculescu F. Synthesis and characterization of biocompatible polymer-ceramic film structures as favorable interface in guided bone regeneration. Appl. Surf. Sci. 2019;494:335–352. doi: 10.1016/j.apsusc.2019.07.098. DOI

Negrescu A.-M., Necula M.-G., Gebaur A., Golgovici F., Nica C., Curti F., Iovu H., Costache M., Cimpean A. In Vitro Macrophage Immunomodulation by Poly(ε-caprolactone) Based-Coated AZ31 Mg Alloy. Int. J. Mol. Sci. 2021;22:909. doi: 10.3390/ijms22020909. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Lateral Spacing of TiO2 Nanotube Coatings Modulates In Vivo Early New Bone Formation

. 2025 Jan 28 ; 10 (2) : . [epub] 20250128

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...